

# SEISMIC DESIGN CODE FOR DUBAI

Dubai Municipality

# SEISMIC ANALYSIS AND DESIGN REQUIREMENTS A FOR BUILDINGS A

| A                                                                        |            |
|--------------------------------------------------------------------------|------------|
| 1. GENERAL REQUIREMENTS A                                                | 1 <b>A</b> |
| 1.1. SCOPE, NOTATIONS, REFERENCE STANDARDS A                             | 1 A        |
| 1.1.1. Scope <b>A</b>                                                    | 1 A        |
| 1.1.2. Notations A                                                       | 1 <b>A</b> |
| 1.1.3. Reference standards <b>A</b>                                      | 6 A        |
| 1.2. SEISMIC GROUND MOTION A                                             | 7 A        |
| 1.2.1. Earthquake levels A                                               | 7 A        |
| 1.2.2. Representation of ground motion: Elastic Response Spectrum A      | 7 A        |
| 1.2.3. Representation of ground motion in time domain A                  | 8 A        |
| 1.3. SEISMIC PERFORMANCE OBJECTIVES A                                    | 10 A       |
| 1.3.1. Classification of buildings A                                     | 10 A       |
| 1.3.2. Performance levels and ranges A                                   | 10 A       |
| 1.3.3. Minimum performance objective for low- to medium-rise buildings   |            |
| 1.3.4. Multiple minimum performance objectives for tall buildings A      | 11 A       |
| 1.4. GENERAL GUIDELINES FOR ARRANGEMENT OF BUILDING A                    |            |
| STRUCTURAL SYSTEMS A                                                     | 13 A       |
| 1.4.1. Structural simplicity A                                           | 13 A       |
| 1.4.2. Uniformity, symmetry and redundancy A                             | 13 A       |
| 1.4.3. Adequate resistance and stiffness A                               | 13 A       |
| 1.4.4. Diaphragm action A                                                | 14 A       |
| 1.4.5. Adequate foundation A                                             | 14 A       |
| 1.5. REGULARITY REQUIREMENTS A                                           | 15 A       |
| 1.5.1. Definition of Irregular Buildings A                               | 15 A       |
| 1.5.2. Conditions for Irregular Buildings A                              | 15 A       |
| 1.6. PRIMARY AND SECONDARY SEISMIC MEMBERS A                             | 17 A       |
| 1.6.1. Primary members A                                                 | 17 A       |
| 1.6.2. Secondary members A                                               | 17 A       |
| 2. SEISMIC ANALYSIS REQUIREMENTS OF BUILDINGS A                          | 18 A       |
| 2.1. PARAMETERS OF DESIGN RESPONSE SPECTRUM A                            | 18 A       |
| 2.1.1. Importance Factors A                                              | 18 A       |
| 2.1.2. Seismic Load Reduction Factors A                                  | 18 A       |
| 2.1.3. Design Response Spectrum A                                        | 19 A       |
| 2.2. SEISMIC ANALYSIS A                                                  | 20 A       |
| 2.2.1. Applicable analysis methods A                                     | 20 A       |
| 2.2.2. Selection of analysis method for low- to medium-rise buildings    |            |
| 2.2.3. Definition of seismic mass A                                      | 20 A       |
| 2.2.4. Consideration of vertical component of earthquake A               | 21 A       |
| 2.3. EQUIVALENT SEISMIC LOAD METHOD A                                    | 22 A       |
| 2.3.1. Displacement components and application points of seismic loads A |            |
| 2.3.2. Base shear A                                                      | 22 A       |
| 2.3.3. Storey seismic loads A                                            | 22 A       |
| 2.3.4. Predominant period A                                              | 23 A       |
| 2.3.5. Directional combination A                                         | 24 A       |
| 2.4. MULTI-MODE RESPONSE SPECTRUM ANALYSIS METHOD A                      | 25 A       |
| 2.4.1. Dynamic degrees of freedom A                                      | 25 A       |
| 2.4.2. Modal seismic loads A                                             | 25 A       |
| 2.4.3 Number of vibration modes A                                        | 26 A       |

A i

| 2.4.4. Modal combination A                                                                                                   | 26 A         |
|------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2.4.5. Scaling of response quantities A                                                                                      | 26 A         |
| 2.4.6. Directional combination A                                                                                             | 27 A         |
| 2.5. RESPONSE HISTORY ANALYSIS METHOD A                                                                                      | 28 A         |
| 2.5.1. Linear Response History Analysis A                                                                                    | 28 A         |
| 2.5.2. Nonlinear Response History Analysis A                                                                                 | 28 A         |
| 2.6. SAFETY VERIFICATION A                                                                                                   | 29 A         |
| 2.6.1. Strength verification A                                                                                               | 29 A         |
| 2.6.2. Load combinations for seismic design A                                                                                | 29 A         |
| 2.6.3. Second-order effects A                                                                                                | 29 A         |
| 2.7. DAMAGE LIMITATION A                                                                                                     | 31 A         |
| 2.7.1. Limitation of story drifts A                                                                                          | 31 A         |
| 2.7.2. Seismic joints A                                                                                                      | 31 A         |
| 2.8. ANALYSIS REQUIREMENTS FOR NONSTRUCTURAL SYSTEMS A                                                                       | 33 A         |
| 3. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE                                                                       | A            |
| BUILDINGS A                                                                                                                  | 34 <b>A</b>  |
| 3.1. SCOPE AND DESIGN CONCEPTS A                                                                                             | 34 <b>A</b>  |
| 3.1.1. Scope <b>A</b>                                                                                                        | 24 A         |
| 3.1.2. Design Concepts A                                                                                                     | 34 <b>A</b>  |
| 3.1.3. Structural types and Behaviour Factors A                                                                              | 34 <b>A</b>  |
| 3.1.4. Design actions A                                                                                                      | 35 A         |
| 3.1.5. Capacity Design Rules A                                                                                               | 36 A         |
| 3.1.6. Material requirements <b>A</b>                                                                                        | 37 <b>A</b>  |
| 3.1.7. Local ductility requirements <b>A</b>                                                                                 | 37 <b>A</b>  |
| 3.2. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE                                                                     | 4            |
| BEAMS A                                                                                                                      | 38 A         |
| 3.2.1. Geometrical requirements A                                                                                            | 38 A         |
| 3.2.2. Design shear forces of beams A                                                                                        | 38 A         |
| 3.2.3. Seismic detailing of beams A                                                                                          | 39 A         |
| 3.3. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE                                                                     |              |
| COLUMNS A                                                                                                                    | 40 A         |
| 3.3.1. Geometrical requirements A                                                                                            | 40 A         |
| 3.3.2. Design shear forces of columns A                                                                                      | 40 A         |
| 3.3.3. Seismic detailing of columns A                                                                                        | 40 A         |
| 3.3.4. Seismic detailing of beam-column joints A                                                                             | 41 A         |
| 3.4. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE                                                                     |              |
| STRUCTURAL WALLS A                                                                                                           | 43 A         |
| 3.4.1. Geometrical requirements A                                                                                            | 43 A         |
| 3.4.2. Design bending moments and shear forces of structural walls A                                                         | 43 A         |
| 3.4.3. Seismic detailing of structural walls A                                                                               | 44 A         |
| 3.5. REQUIREMENTS FOR ANCHORAGE AND SPLICING OF REBARS A                                                                     | 45 A         |
| 3.5.1. General A                                                                                                             | 45 A         |
| 3.5.2. Anchorage of rebars A                                                                                                 | 45 A         |
| 3.5.3. Splicing of rebars A                                                                                                  | 46 A         |
| 3.6. DESIGN AND DETAILING OF SECONDARY SEISMIC ELEMENTS A                                                                    | 40 4         |
| 3.7. SEISMIC DESIGN REQUIREMENTS FOR FOUNDATIONS A                                                                           | 48 A         |
| 3.7.1. General A                                                                                                             | 48 A         |
| 3.7.2. Tie-beams and foundation beams A                                                                                      | 48 A         |
| 3.7.3. Connection of vertical elements with foundation beams and walls A 3.7.4. Cast-in-place concrete piles and pile caps A | 48 A<br>49 A |
| 5.7.4. Cast-in-diace concrete difes and dife cads A                                                                          | 47 A         |

A ii

| 4. SEISMIC DESIGN REQUIREMENTS FOR STRUCTURAL STEEL A                                  |              |
|----------------------------------------------------------------------------------------|--------------|
| BUILDINGS A                                                                            | 50 A         |
| 4.1. SCOPE AND DESIGN CONCEPTS A                                                       | 50 A         |
| 4.1.1. Scope A                                                                         | 50 A         |
| 4.1.2. Design Concepts A                                                               | 50 A         |
| 4.1.3. Structural types and Behaviour Factors A                                        | 50 A         |
| 4.1.4. Material requirements A                                                         | 51 A         |
| 4.2. GENERAL DESIGN CRITERIA AND DETAILING RULES A                                     | 53 A         |
| 4.2.1. Design rules for ductile elements in compression or bending A                   | 53 A         |
| 4.2.2. Design rules for ductile elements in tension A                                  | 53 A         |
| 4.2.3. Design rules for connections A                                                  | 53 A         |
| 4.3. DESIGN AND DETAILING RULES FOR MOMENT RESISTING FRAME                             |              |
| 4.3.1. Design criteria A                                                               | 54 A         |
| 4.3.2. Beams A                                                                         | 54 A         |
| 4.3.3. Columns A                                                                       | 55 A         |
| 4.3.4. Beam-column connections A                                                       | 56 A         |
| 4.4. DESIGN AND DETAILING RULES FOR FRAMES WITH CONCENTRIC                             |              |
| BRACINGS A                                                                             | 57 A         |
| 4.4.1. Design criteria A                                                               | 57 A         |
| 4.4.2. Analysis A                                                                      | 57 A         |
| 4.4.3. Diagonal members A                                                              | 57 A<br>58 A |
| 4.4.4. Beams and columns A 4.5. DESIGN AND DETAILING RULES FOR FRAMES WITH ECCENTRIC A |              |
| BRACINGS A                                                                             | 1<br>60 A    |
| 4.5.1. Design criteria A                                                               | 60 A         |
| 4.5.2. Seismic links A                                                                 | 60 A         |
| 4.5.3. Members not containing seismic links A                                          | 62 A         |
| 4.5.4. Connections of seismic links A                                                  | 63 A         |
| 4.6. DESIGN RULES FOR STEEL BUILDINGS WITH CONCRETE CORES O                            |              |
| CONCRETE WALLS A                                                                       | 64 A         |
| 4.7. DESIGN RULES FOR INVERTED PENDULUM STRUCTURES A                                   | 65 A         |
| 5. SEISMIC DESIGN REQUIREMENTS FOR STEEL – CONCRETE A                                  | 05 1         |
| COMPOSITE BUILDINGS A                                                                  | 66 A         |
| 5.1. SCOPE AND DESIGN CONCEPTS A                                                       | 66 A         |
| 5.1.1. Scope A                                                                         | 66 A         |
| 5.1.2. Design concepts A                                                               | 66 A         |
| 5.1.3. Structural types and Behaviour Factors A                                        | 67 A         |
| 5.1.4. Material requirements A                                                         | 68 A         |
| 5.2. STRUCTURAL ANALYSIS A                                                             | 70 A         |
| 5.2.1. Scope A                                                                         | 70 A         |
| 5.2.2. Stiffness of sections A                                                         | 70 A         |
| 5.3. DESIGN CRITERIA AND DETAILING RULES FOR DISSIPATIVE A                             |              |
| STRUCTURAL BEHAVIOUR COMMON TO ALL STRUCTURAL TYPE                                     |              |
| 5.3.1. Design criteria for dissipative structures A                                    | 71 A         |
| 5.3.2. Plastic resistance of dissipative zones A                                       | 71 A         |
| 5.3.3. Detailing rules for composite connections in dissipative zones A                | 71 A         |
| 5.4. RULES FOR MEMBERS A                                                               | 73 A         |
| 5.4.1. General A                                                                       | 73 A         |
| 5.4.2. Steel beams composite with slab A                                               | 74 A         |
| 5.4.3. Effective width of slab A                                                       | 75 A         |

A iii

| 5.4.4. Fully encased composite columns A                                        | 76 A        |
|---------------------------------------------------------------------------------|-------------|
| 5.4.5. Partially-encased members A                                              | 77 A        |
| 5.4.6. Filled composite columns A                                               | 78 A        |
| 5.5. DESIGN AND DETAILING RULES FOR MOMENT FRAMES A                             | 79 A        |
| 5.5.1. Specific criteria A                                                      | 79 A        |
| 5.5.2. Analysis A                                                               | 79 A        |
| 5.5.3. Rules for beams and columns A                                            | 79 A        |
| 5.5.4. Beam to column connections A                                             | 80 A        |
| 5.5.5. Condition for disregarding the composite character of beams with slab A  | 80 A        |
| 5.6. DESIGN AND DETAILING RULES FOR COMPOSITE A                                 |             |
| CONCENTRICALLY BRACED FRAMES A                                                  | 81 A        |
| 5.6.1. Specific criteria A                                                      | 81 A        |
| 5.6.2. Analysis A                                                               | 81 A        |
| 5.6.3. Diagonal members A                                                       | 81 A        |
| 5.6.4. Beams and columns A                                                      | 81 A        |
| 5.7. DESIGN AND DETAILING RULES FOR COMPOSITE A                                 |             |
| ECCENTRICALLY BRACED FRAMES A                                                   | 82 A        |
| 5.7.1. Specific criteria A                                                      | 82 A        |
| 5.7.2. Analysis A                                                               | 82 A        |
| 5.7.3. Seismic links A                                                          | 82 A        |
| 5.7.4. Members not containing seismic links A                                   | 83 A        |
| 5.8. DESIGN AND DETAILING RULES FOR STRUCTURAL SYSTEMS A                        |             |
| MADE OF REINFORCED CONCRETE STRUCTURAL WALLS A                                  |             |
| COMPOSITE WITH STRUCTURAL STEEL ELEMENTS A                                      | 84 A        |
| 5.8.1. Specific criteria A                                                      | 84 A        |
| 5.8.2. Analysis A                                                               | 84 A        |
| 5.8.3. Detailing rules for composite walls A                                    | 84 A        |
| 5.8.4. Detailing rules for coupling beams A                                     | 85 A        |
| 5.9. DESIGN AND DETAILING RULES FOR COMPOSITE A                                 |             |
| STRUCTURAL WALLS A                                                              | 86 A        |
| 5.9.1. Specific criteria A                                                      | 86 A        |
| 5.9.2. Analysis A                                                               | 86 A        |
| 5.9.3. Detailing rules A                                                        | 86 A        |
| 6. PERFORMANCE-BASED SEISMIC DESIGN REQUIREMENTS FOR A                          |             |
| TALL BUILDINGS A                                                                | 87 <b>A</b> |
| 6.1. SEISMIC ANALYSIS PROCEDURES FOR TALL BUILDINGS A                           | 87 A        |
| 6.2. REQUIREMENTS FOR ANALYSIS MODELING A                                       | 88 A        |
| 6.3. PERFORMANCE-BASED SEISMIC DESIGN STAGES OF TALL A                          |             |
| BUILDINGS A                                                                     | 90 A        |
| 6.3.1. Design Stage (I – A): Preliminary Design dimensioning) with Linear A     |             |
| Analysis for Controlled Damage/Life Safety Performance Objective A              |             |
| under (E2) Level Earthquake A                                                   | 90 A        |
| 6.3.2. Design Stage (I – B): Design with Nonlinear Analysis for Life Safety / A |             |
| Controlled Damage Performance Objective under (E2) Level A                      |             |
| Earthquake A                                                                    | 90 A        |
| 6.3.3. Design Stage (II: Design Verification with Linear Analysis for Minimum   | n A         |
| Damage/Immediate Occupancy Performance Objective under (E1) Level               |             |
| Earthquake A                                                                    |             |
| A                                                                               |             |
| A                                                                               | 91 A        |

A iv

| 6.3.4. Design Stage (III): Design Verification with Nonlinear Analysis for A            |       |
|-----------------------------------------------------------------------------------------|-------|
| Extensive Damage/ Collapse Prevention Performance Objective under A                     | 1     |
| (E3) Level Earthquake A                                                                 | 91 A  |
| 6.4. DESIGN REQUIREMENTS FOR NONSTRUCTURAL ARCHITECTURAL                                | A     |
| AND MECHANICAL/ELECTRICAL ELEMENTS/COMPONENTS A                                         | 93 A  |
| 6.4.1. General requirements A                                                           | 93 A  |
| 6.4.2. Equivalent seismic loads A                                                       | 93 A  |
| 6.4.3. Limitation of displacements A                                                    | 96 A  |
|                                                                                         | 96 A  |
| 6.4.4. Nonstructural façade elements and connections A 6.5. INDEPENDENT DESIGN REVIEW A |       |
| 7. STRUCTURAL HEALTH MONITORING SYSTEMS FOR A                                           | 96 A  |
| TALL BUILDINGS A                                                                        | 07.4  |
|                                                                                         | 97 A  |
| NNEX A. SOIL CLASSIFICATION FOR SPECIFICATION OF SEISMIC A                              | 00 4  |
| GROUND MOTION A                                                                         | 98 A  |
| A.1. Soil classification procedure A                                                    | 98 A  |
| A.2. Steps for classifying Soil Classes C,D,E,F A                                       | 99 A  |
| A.3. Classifying Soil Classes A,B A                                                     | 100 A |
| A                                                                                       |       |
| $\mathbf{A}$                                                                            |       |
| ${f A}$                                                                                 |       |
| $\mathbf{A}$                                                                            |       |
| ${f A}$                                                                                 |       |
| A                                                                                       |       |
|                                                                                         |       |
| $oldsymbol{A}$                                                                          |       |
| $\mathbf{A}$                                                                            |       |
| ${f A}$                                                                                 |       |
| $\mathbf{A}$                                                                            |       |
| ${f A}$                                                                                 |       |
| A                                                                                       |       |
|                                                                                         |       |
| $oldsymbol{A}$                                                                          |       |
| $\mathbf{A}$                                                                            |       |
| $\mathbf{A}$                                                                            |       |
| ${f A}$                                                                                 |       |
| ${f A}$                                                                                 |       |
| A                                                                                       |       |
|                                                                                         |       |
| $\mathbf{A}$                                                                            |       |
| ${f A}$                                                                                 |       |
| ${f A}$                                                                                 |       |
| ${f A}$                                                                                 |       |
| A                                                                                       |       |
|                                                                                         |       |
| $\mathbf{A}$                                                                            |       |
| $\mathbf{A}$                                                                            |       |
| $\mathbf{A}$                                                                            |       |
| A                                                                                       |       |

A v

# CHAPTER 1 A GENERAL REQUIREMENTS A

# 1.1. SCOPE, NOTATIONS, REFERENCE STANDARDS A

A

### 1.1.1. Scope A

A

1.1.1.1 – This standard covers the seismic analysis and design requirements of reinforced A concrete And Asteel Asuilding Astructures As Ase Asonstructed Asvithin Assundaries Asf Æmirate Asf A Dubai. A

Α

- 1.1.1.2 This Atandard is Applicable to low- to Amedium Asise buildings As Avell As to tall A buildings, as defined in 1.3.1. A
- a) All parts of this standard excluding **Chapters 6** and 7 are applicable to low- to medium A rise buildings. A
- **b** Special seismic analysis and design requirements applicable to tall buildings are given in A **Chapters 6** and **7**. Parts of sections **1.2** and **1.3** of **Chapter 1** as well as parts of **Chapter 2** A that are referred to in **Chapter 6** are also applicable to tall buildings. A

A

- **1.1.1.3** Civil engineering structures other than buildings are outside the scope of this code. A
- **1.1.1.4** Base-isolated buildings as well as buildings equipped with active or passive control A systems and devices are outside the scope of this code. A

Α

#### 1.1.2. Notations A

A

- A A = Gross area of seismic link A
- $A_c$  A = Total effective area of structural walls in the first storey for empirical calculation of A predominant period in the eartquake direction [m<sup>2</sup>] A
- $A_{\rm e}$  A = Maximum acceleration acting on nonstructural element or component A
- $A_j$  A = Effective area of the j'th structural walls in the first storey for empirical calculation A of predominant period in the eartquake direction [m<sup>2</sup>] A
- $A_{pl}$  A = Horizontal area of the plate A
- $A_{\rm st}$  A = Area of one leg of the transverse reinforcement; area of stiffener A
- $B_{\rm e}$  A = Amplification factor for nonstructural element or component A
- b A = Width of the flange A
- $b_b$  A = Width of composite beam or bearing width of the concrete of the slab on the A column A
- $b_c$  A = Cross sectional dimension of column A
- $b_{\rm e}$  A = Partial effective width of flange on each side of the steel web A
- $b_{\text{eff}}$  A = Effective flange width of beam in tension at the face of a supporting column; total A effective width of concrete flange A
- b<sub>i</sub> A = Distance between consecutive bars engaged by a corner of a tie or a cross-tie in a column A
- $b_0$  A = Width of a confined core in a column or in the boundary element of a wall (to A centerline of hoops) A
- $b_{\rm w}$  A = Width of the web of a beam A
- $b_{\text{wo}}$  A = Web thickness of wall A
- $C_1$  A = Empirical factor for the calculation of predominant period in the earthquake A

A 1

Α

#### direction A

 $D_i$  A = Torsion amplification factor at i'th storey A

 $D_0$  A = Diameter of confined core in a circular column A

d A = Effective depth of section A

 $d_{\rm bL}$  A = Longitudinal bar diameter A

 $d_{\text{bw}}$  A = Diameter of hoop A

 $d_{fi}$  A = Fictitious displacements at i'th storey used in Rayleigh quotient A

 $d_{ii}$  A = Reduced storey displacement of the j'th vertical element at i'th storey A

 $E_a$  A = Modulus of Elasticity of steel A

 $E_{\rm cm}$  A = Mean value of Modulus of Elasticity of concrete in accordance with EN 1992-1- A 1:2004 A

 $E_{\rm d}$  A Design value of an action effect A

 $E_{di}$  A = Design value of the action effect on the zone or element *i* in the seismic design A situation A

 $E_{\rm E}$  A = Action effect due to seismic load A

 $E_{\rm Fd}$  A Design value of an action effect on the foundation A

 $E_G$  A = Action effect due to dead load A

 $E_{\rm F,E}$  A = Action effect from the analysis of the design seismic action A

 $E_{F,G}$  A = Action effect due to the non-seismic actions included in the combination of A actions for the seismic design situation A

 $E_{OA}$  = Action effect due to live load A

e A = Length of seismic link A

 $F_{\rm fi}$  A = Fictitious forces at i'th storey used in Rayleigh quotient A

 $F_i$  A = Equivalent seismic load acting at i'th storey A

 $F_{\text{xin}}$  A = Modal seismic load in the n'th mode acting at i'th storey in x direction A

 $F_{\text{vin}}$  A = Modal seismic load in the n'th mode acting at i'th storey in y direction A

 $F_{\theta in}$  A Modal seismic torque in the n'th mode acting at i'th storey around the vertical axis A passing through mass centre A

cd A = Design value of concrete compressive strength A

ce A = Exopected value of concrete compressive strength A

ck A Characteristic value of concrete compressive strength A

ctm A = Mean value of concrete tensile strength A

<sub>v</sub> A = Nominal value of steel yield strength A

<sub>vd</sub> A = Design value of steel yield strength A

ve A = Expected value of steel yield strength A

vdf A = Design yield strength of steel in the flange A

 $v_{d,v}$  A = Design value of yield strength of the vertical web reinforcement A

ydw A = Design strength of web reinforcement A

vk A = Characteristic value of steel yield strength A

vld A = Design value of yield strength of longitudinal reinforcement A

ywd A = Design value of yield strength of transverse reinforcement A

<sub>e</sub> A = Equivalent seismic load acting at the mass centre of nonstructural element A

 $G_i$  A = Total dead load at i'th storey of building A

 $g A = Acceleration of gravity 9.81 m/s^2 A$ 

 $H_i$  A = Total height of building measured from the top foundation level A (In buildings with rigid peripheral basement walls, total height of building A measured from the top of the ground floor level) [m] A

 $H_N$  A = Total height of building measured from the top foundation level A (In buildings with rigid peripheral basement walls, total height of building A measured from the top of the ground floor level) [m] A

 $H_{\rm w}$  A = Total wall height measured from top foundation level or ground floor level A

h A =Cross sectional depth A

 $h_b$  A = Depth of composite beam A

 $h_c$  A = Cross sectional depth of a column in a given direction A

 $h_{\rm f}$  A = Flange depth A

 $h_i$  A = Height of i'th storey of building [m] A

 $h_0$  A = Depth of confined core in a column (to centerline of hoops) A

 $h_{\rm w}$  A = Depth of beam A

I A = Building Importance Factor A

I<sub>a</sub> A = Second moment of area of the steel section part of a composite section, with A respect to the centroid of the composite section A

 $I_c$  A = Second moment of area of the concrete part of a composite section, with respect to A the centroid of the composite section  $I_{eq}$  equivalent second moment of area of the A composite section A

 $I_e$  A = Element nonstructural Importance Factor A

I<sub>s</sub> A = Second moment of area of the rebars in a composite section, with respect to the A centroid of the composite section A

 $k_{\rm e}$  A = Effective stiffness coefficient of the nonstructural element or component. A

 $k_{\rm r}$  A = Rib shape efficiency factor of profiled steel sheeting A

 $k_t$  A = Reduction factor of design shear resistance of connectors in accordance with EN A 1994-1-1:2004 A

L A = Beam span A

 $l_{\rm c}$  A = Column height A

 $l_{\rm cl}$  A = Clear length of a beam or a column A

 $l_{\rm cr}$  A = Length of critical region A

 $l_{\rm w}$  A = Length of wall cross-section A

 $l_{\rm wi}$  A = Plan length of j'th structural wall or a piece of coupled wall at the first story A

 $\dot{M}_{\rm Ed}$  A = Design bending moment obtained from analysis for the seismic design situation A

 $M_{\rm Ed\,E}$  A= Bending moment due to design seismic action A

 $M_{\rm Ed,G}$  A= Bending moment due to non-seismic actions in seismic design situation A

 $M_{\rm Ed,W}$  = Design bending moment obtained from analysis at the base of the wall for the A seismic design situation A

 $M_i$  A = i'th storey mass of building  $M_i$   $W_i/g$  A

 $M_{i,d}$  A = End moment of a beam or column for calculating capacity design shear A

 $M_{\rm N}$  A = Nominal plastic moment of RC section A

 $M_{n,k}$  A = Modal mass of the n'th natural vibration mode A

 $M_{\rm pl.Rd}$  = Design value of plastic moment resistance A

 $M_{\rm pl,Rd,A}$  = Design value of plastic moment resistance at end A of a member A

 $M_{\rm pl,Rd,B}$  = Design value of plastic moment resistance at end B of a member A

 $M_{\rm pl,Rd,c}$  = Design value of plastic moment resistance of column, taken as lower bound and A computed taking into account the concrete component of the section and only the A steel components of the section classified as ductile **A** 

 $M_{\rm Rb,i}$  A= Design moment resistance of a beam at end i A

 $M_{\text{Rc,i}}$  A = Design moment resistance of a column at end i A

 $M_{\rm Rd}$  A = Design bending moment resistance A

 $M_{\rm Rd,W}$  = Design bending moment resistance at the base of the wall **A** 

 $M_{\rm xn}$  A = Effective participating mass of the n'th natural vibration mode of building in A the x earthquake direction considered A

 $M_{\rm vn}$  A = Effective participating mass of the n'th natural vibration mode of building in A

the y earthquake direction considered A

 $M_t$  A = Total mass of building  $(M_t W_t/g$  A

 $M_{\rm U,Rd,b}$  = Upper bound plastic resistance of beam, computed taking into account the concrete A component of the section and all the steel components in the section, including A those not classified as ductile A

 $M_{\rm Y}$  A = Bending moment corresponding to the state of first-yield in RC section A

*m*<sub>e</sub> A Nonstructural element mass A

N A = Total number of stories of building from the foundation level A
 (In buildings with rigid peripheral basement walls, total number of stories from the A ground floor level) A

 $N_{\rm Ed}$  A = Design axial force obtained from analysis for the seismic design situation A

 $N_{\rm Ed,E}$  A= Axial force due to design seismic action A

 $N_{\rm Ed,G}$  A= Axial force due to non-seismic actions in seismic design situation A

 $N_{\rm pl,Rd}$  A= Design value of yield resistance in tension of the gross cross-section of a member in A accordance with EN 1993-1-1:2004 A

n A = Steel-to-concrete modular ratio for short term actions A

 $n_1$  A = Live Load Mass Reduction Factor A

 $n_2$  A = Live Load Participation Factor A

 $Q_{Cx}$  A = Response quantity obtained by modal combination in Response Spectrum A Method for an earthquake in x direction A

 $Q_{Cy}$  A Response quantity obtained by modal combination in Response Spectrum A Method for an earthquake in y direction A

 $Q_D$  A = Design response quantity due to seismic action A

 $Q_i$  A = Total live load at i'th storey of building A

 $Q_{Sx}$  A = Scaled response quantity obtained by modal combination in Response Spectrum A Method for an earthquake in x direction A

 $Q_{Sy}$  A = Scaled response quantity obtained by modal combination in Response Spectrum A Method for an earthquake in y direction A

 $Q_x$  A Response quantity obtained in Equivalent Seismic Load Method for an earthquake A in x direction A

 $Q_{yA}$  = Response quantity obtained in Equivalent Seismic Load Method for an earthquake A in y direction A

q A = Behaviour Factor A

 $q_e$  A = Behaviour Factor for nonstructural element or component A

 $q_R$  T A= Seismic Load Reduction Factor A

R<sub>d</sub> A Design resistance of an element; resistance of connection in accordance with EN A 1993-1-1:2004 A

 $R_{\rm di}$  A Design resistance of the zone or element if

 $R_{\text{fy}}$  A = Plastic resistance of connected dissipative member based on design yield strength A of material as defined in EN 1993-1-1:2004 A

 $Sf_E T$  = Elastic spectral acceleration [m/s<sup>2</sup>] A

 $Sf_R$  T) A Design (reduced) spectral acceleration [m/s<sup>2</sup>] A

 $S_{SD}$  A = Short period (0.2 second) elastic spectral acceleration [m/s<sup>2</sup>] A

 $S_{1D}$  A = 1.0 second elastic spectral acceleration [m/s<sup>2</sup>] A

s A = Spacing of transverse reinforcement [mm] A

T A =Natural period of vibration [s] A

 $T_{\rm L}$  A = Transition period of response spectrum to long-period range [s] A

 $T_o$  A = Response spectrum short corner period [s] A

 $T_S$  A = Response spectrum long corner period [s] A

 $T_1$  A = Natural period of predominant mode (first mode) [s] A

 $T_n$  A = Natural period of n'th mode [s] A

 $t_f$  A = Flange thickness of a seismic link A

 $t_{\rm w}$  A = Web thickness of a seismic link A

 $V_b$  A = Base shear in the earthquake direction considered A

 $V_{\rm bx}$  A = Base shear in x earthquake direction A

 $V_{bCx}$  A = Base shear obtained by modal combination in x earthquake direction A

 $V_{\rm by}$  A = Base shear in x earthquake direction A

 $V_{bCy}$  A = Base shear obtained by modal combination in y earthquake direction A

 $V_{\rm Ed\,A}$  = Shear force obtained from analysis for the seismic design situation A

 $V_{\rm Ed}$  A = Design shear force determined in accordance with capacity design rule A

 $V_{\rm Ed,E}$  A = Shear force due to design seismic action A

 $V_{\rm Ed,G}$  A= Shear force due to non-seismic actions in seismic design situation A

 $V_{\rm Ed,M}$  A= Shear force due to application of plastic moment resistances at the two A ends A

 $V_i$  A = i'th storey seismic shear in the earthquake direction considered A

V<sub>ic</sub> A = Sum of seismic shear forces of all columns at the i'th storey in the earthquake A direction considered A

V<sub>is</sub> A = Sum of seismic shear forces in the earthquake direction considered at the i'th storey A columns where strong column – weak beam condition is satisfied at both bottom A and top joints A

 $V_{\rm pl,Rd}$  A= Design value of shear resistance of a member in accordance with EN 1993-1-1: A 2004 A

 $V_{\text{wb,Rd A}}$  = Shear buckling resistance of the web panel A

 $V_{\rm wp,Ed\ A}$  = Design shear force in web panel due to design seismic action effects A

 $V_{\rm wp,RdA}$  = Shear resistance of the web panel in accordance with EN 1993- 1-8:2004, 6.2.4.1 A

 $W_i$  A Seismic weight of i'th storey of building A

 $W_t$  A Total seismic weight of building corresponding to total mass,  $M_t$  A

 $\alpha$  A = Confinement effectiveness factor; ratio of the smaller bending moments  $M_{\rm Ed,A}$  at A one end of the link in the seismic design situation, to the greater bending moments A  $M_{\rm Ed,B}$  at the end where the plastic hinge develops, both moments being taken as A absolute values. A

 $\alpha_G$  A = Coefficient used for determining the gap size of a seismic joint A

 $\alpha_i$  A = Ratio of  $V_{is} / V_{ic}$  calculated for any i'th storey A

 $\Delta_{ji}$  A = Reduced storey drift of the j'th vertical element at i'th storey A

 $\Delta_{i \text{ avg}}$  = Average reduced storey drift of the i'th storey A

 $\delta_{ii}$  A = Effective storey drift of the j'th vertical element at i'th storey A

 $\delta_{i \text{ max}}$  = Maximum effective storey drift of the i'th storey A

 $\Delta F_{\rm N}$  A = Additional equivalent seismic load acting on the N'th storey top) of building A

 $\varepsilon$  A = Shear amplification factor of wall A

 $\varepsilon_a$  A = Total strain of steel at Ultimate Limit State A

 $\varepsilon_{\text{cg}}$  A = Upper limit (capacity of concrete compressive strain in the extreme fiber inside the A confinement reinforcement f

 $\varepsilon_{cu2}$  A = Ultimate compressive strain of unconfined concrete A

 $\varepsilon_s$  A = Upper limit (capacity of strain in steel reinforcement A

 $\varepsilon_{\text{syd}}$  A = Design value of steel strain at yield A

η<sub>ti</sub> A Torsional Irregularity Factor defined at i'th storey of building A

 $\eta_{ci}$  A = Strength Irregularity Factor defined at i'th storey of building A

 $\eta_{ki}$  A = Stiffness Irregularity Factor defined at i'th storey of building A

 $\Phi_{xin}$  A = In buildings with floors modelled as rigid diaphragms, horizontal component A of n'th mode shape in the x direction at i'th storey of building A

 $\Phi_{\text{yin}}$  A = In buildings with floors modelled as rigid diaphragms, horizontal component A of n'th mode shape in the y direction at i'th storey of building A

 $\Phi_{\theta in}$  A = In buildings with floors modelled as rigid diaphragms, rotational component A of n'th mode shape around the vertical axis at i'th storey of building A

 $\phi_{y}$  A = Yield curvature corresponding to nominal plastic moment f

 $\phi'_{y}$  A = Curvature corresponding to first-yield A

 $\Gamma_{xn}$  A = Participation Factor of n'th mode for x direction earthquake A

 $\gamma_{ov}$  A = Material overstrength factor A

 $\gamma_{pb}$  A = Factor applied to design value  $N_{pl,Rd}$  of yield resistance in tension of the A compression brace in a V bracing A

 $\bar{\lambda}$  A = Non-dimensional slenderness of a member as defined in EN 1993-1-1:2004 A

 $\mu_{\phi}$  A = Curvature ductility factor A

 $vg_t$  A = Axial force in seismic design situation, normalised to  $Mf_{ed}$ 

A = Value of  $(R_{di} / E_{di} \le q/I)$  of the element i of the structure which has the highest A influence on the effect  $E_F$  under consideration A

<sub>w</sub> A = Mechanical ratio of vertical web reinforcement  $A_v = \rho_{v Ayd,v} / A_{dd}$  A

wd A = Mechanical volumetric ratio of confining reinforcement A

 $\rho$  A = Tension reinforcement ratio A

ρ' A Compression reinforcement ratio A

 $\rho_{max}$  A = Maximum tension reinforcement ratio allowed in the critical region of a primary A beam A

 $\rho_{min}$  A = Minimum tension reinforcement ratio to be provided along a beam A

 $\theta_i$  A = Second Order Effect Indicator defined at i'th storey of building A

 $\theta_p$  A = Rotation capacity of the plastic hinge region A

 $\sum M_{\rm RbA}$  = Sum of design values of moment resistances of beams framing in a joint in the A direction considered A

 $\sum M_{\rm RcA}$  = Sum of design values of moment resistances of columns framing in a joint in the A direction considered A

A

#### 1.1.3. Reference Standards A

A

1.1.3.1 – The Afollowing Astandards Agre Agreeptable Agreence Astandards Ago Age Agrilized An A combination with this standard: A

EN 1990: Eurocode – Basis of structural design A

EN 1992-1-1: Eurocode 2 – Design of concrete structures – Part 1-1: General - Common A rules for building and civil engineering structures A

EN 1993-1-1: Eurocode 3 – Design of steel structures – Part 1-1: General - General rules A

EN 1993-1-1: Eurocode 4 – Design of composite steel and concrete structures – Part 1-1: A General rules and rules for buildings A

EN 1997-1: Eurocode 7 – Geotechnical design – Part 1: General rules A

EN 1998-5: Eurocode 8 – Design of structures for earthquake resistance – Part 5: A Foundations, retaining structures and geotechnical aspects A

**1.1.3.2** – Regarding the utilization of the above-referenced Eurocodes, National Application A Documents of the United Kingdom may be applied. A

#### 1.2. SEISMIC GROUND MOTION A

A

#### 1.2.1. Earthquake levels A

A

The earthquake levels to be considered in this Code are defined in the following: A

A

1.2.1.1 — E1) Earthquake Level: This earthquake level represents relatively frequent but low-A intensity earthquake ground motions with a high probability to occur during the service life of A buildings Awithin Ahe Ascope Aof Ahis ACode. A The Aprobability Aof Asxceedance Aof A(E1) Aevel A earthquake in 50 years is 50%, which corresponds to a return period of 72 years. A

A

1.2.1.2 – (E2) Earthquake Level: This earthquake level represents the infrequent and higher A intensity earthquake ground motions with a low probability to occur during the service life of A buildings Awithin Ahe Ascope Aof Ahis Acode. A Phe Aprobability Aof Ascoedance Aof A(E2) Aevel A earthquake in 50 years is 10%, which corresponds to a return period of 475 years. A

Α

**1.2.1.3** – (E3) Earthquake Level: This earthquake level represents the highest intensity, very A infrequent earthquake ground motions that the buildings within the scope of this Code may be A subjected to. The probability of exceedance of E3) level earthquake in 50 years is 2%, which A corresponds to a return period of 2475 years. A

Α

# 1.2.2. Representation of ground motion: Elastic Response Spectrum A

A

**1.2.2.1** – Within the boundaries of Emirate of Dubai, 5% damped horizontal elastic spectral A accelerations Asorresponding Ato Ashort Aperiod A(0.2 Asecond),  $AS_{SDA}$  And A(0.0 Asecond Anatural A vibration period,  $S_{ID}$ , are given for (E1, E2 and (E3) earthquake levels in **Table 1.1** for A local soil classes defined in Annex A. A

A

1.2.2.2 – Elastic Aesponse Apectrum Aepresenting Ahe Anorizontal Acomponent And Acarthquake A ground motion is defined as follows (Fig.1.1: A

$$Sf_{E} T A\omega 0.4 Sf_{DA} + \omega 0.6 A \frac{S_{SDA}}{Tf_{A}} T \qquad (Tf \leq T)$$

$$Sf_{EA} T A\omega S_{SDA} \qquad (Tf_{A} \leq T \leq T_{SA})$$

$$Sf_{EA} T A\omega \frac{S_{1DA}}{Tf} \qquad (Tf \leq Tf \leq T_{L})$$

$$Sf_{E} T A\omega \frac{S_{1DA}T_{LA}}{Tf} \qquad T_{LA} \leq T A$$
1.1)

Α

Spectrum corner periods  $T_0$  and  $T_S$  are defined as: A

$$T_{fA} = \frac{S_{1DA}}{S_{SDA}} \qquad ; \qquad T_{f} \omega 0.2T_{f} A \qquad \qquad 1.2)$$

Transition period to long-period range shall be taken for Emirate of Dubai as  $T_{\rm L}$  8 s. A

A

A

A

|                   |                       |             | Earthqua       | ike Level    | A                  |             |
|-------------------|-----------------------|-------------|----------------|--------------|--------------------|-------------|
| Soil A<br>Class A | E1) A                 |             | E2) A          |              | E                  | 3) A        |
| 014455            | S <sub>SD</sub> / g A | $S_{1D}/gA$ | $S_{SD} / g A$ | $S_{1D}/gA$  | $S_{SD}$ / $g$ $A$ | $S_{1D}/gA$ |
| A                 | 0.080 A               | 0.032 A     | 0.120 A        | 0.053 A      | 0.180 A            | 0.080 A     |
| ВА                | 0.100 A               | 0.040 A     | 0.150 A        | 0.067 A      | 0.225 A            | 0.100 A     |
| C A               | 0.120 A               | 0.068 A     | 0.180 A        | 0.113 A      | 0.270 A            | 0.170 A     |
| D A               | 0.160 A               | 0.096 A     | 0.240 A        | 0.160 A      | 0.360 A            | 0.240 A     |
| E A               | 0.250 A               | 0.140 A     | 0.375 A        | 0.233 A      | 0.563 A            | 0.350 A     |
| F A               |                       | _           |                | estigation a |                    | ic site A   |
|                   | response              | analysis re | quired (see    | e Annex A    | . A                |             |

Table 1.1. Short period and 1.0 second elastic spectral accelerations A



Figure 1.1. Elastic Response Spectrum A

A

1.2.2.3 – When required, elastic acceleration spectrum may be determined through special A investigations Aby Aconsidering Aocal Aseismic And Asite Aconditions. Allowever A5% Adamped A acceleration spectrum ordinates shall in no case be less than those determined by Eq.(1.1) A based on short-period and 1.0 second spectral accelerations given in Table 1.1. A

1.2.2.4 – Elastic response spectrum representing the vertical component of earthquake ground A motion may be taken as half the value of the corresponding to horizontal component. A

# 1.2.3. Representation of ground motion in time domain A

1.2.3.1 - A minimum three or seven sets of earthquake ground motions acceleration records A in two perpendicular horizontal directions) with the following properties shall be selected for A the analysis to be performed in the time domain. Real acceleration records may be obtained A from the following data banks: A

Cosmos Virtual Data Center <a href="http://db.cosmos-eq.org/">http://db.cosmos-eq.org/</a> A

Peer Strong Motion Database <a href="http://peer.berkeley.edu/smcat/">http://peer.berkeley.edu/smcat/</a> A

European Strong- Motion Database <a href="http://www.isesd.cv.ic.ac.uk/ESD/frameset.htm">http://www.isesd.cv.ic.ac.uk/ESD/frameset.htm</a> A Japan K-NET NIED <a href="http://www.k-net.bosai.go.jp/">http://www.k-net.bosai.go.jp/</a> A

A

1.2.3.2 A An Ahe Asases Awhere Aufficient Anumber As facceleration Accords Asannot Ase Asound, A artificial earthquake ground motions generated as compatible with the earthquake simulations A or the elastic response spectrum may be used. The same acceleration record accelerogram A shall not be used for both directions. The ground motion simulations shall be based on a A physical model considering the fault mechanism, rupture characteristics and the geological A structure of the medium between the earthquake source and recording station. A

A

1.2.3.3 – The average of 5% damped spectral amplitudes calculated at zero period from each A set of earthquake ground motion shall not be less than zero-period spectral amplitude of the A elastic response spectrum  $0.4\ S_{\rm SD}$ . A

A

**1.2.3.4** – The duration between the two points where acceleration amplitude first and last A exceed  $\pm 0.05$ g shall not be shorter than 5 times the dominant natural vibration period of the A building nor 15 seconds for each earthquake ground motion record. A

Α

1.2.3.5 – The resultant spectrum of an earthquake ground motion set shall be obtained through A square-root-of-sum-of-squares of 5% damped spectra of the two directions. The amplitudes of A earthquake Aground Amotions Ashall Ase Ascaled According Aso As Asule Asuch Ashat Ashe Asverage Asf A amplitudes Asf Ashe Asesultant Aspectra Asf Asil Ascords Abetween Ashe Aperiods A0.2T Asnd Al.2T

A

T Dominant natural vibration period of the building shall not be less than 1.3 times the A amplitudes of the elastic response spectrum along the same period range. The scaling of both A components shall be made with the same factors. A

Α

**1.2.3.6** – Regarding the seismic design of tall buildings according to **Chapter 5**, if needed, A parameters related to vertical component of the earthquake ground motion may be specified, A subject to the approval of the *Independent Review Board* where applicable. A

A A

A

A A

A

A A

A

A A

A

A A

A

A A

A A

A

#### 1.3. SEISMIC PERFORMANCE OBJECTIVES A

A

### 1.3.1. Classification of buildings A

A

For the purpose of identifying seismic performance objectives as well as analysis and design A requirements, Abuildings Ashall Abe Aslassified Anto Aswo Agroups, Anamely Alow- Ato Amedium-rise A buildings and tall buildings. A

Α

**1.3.1.1** – Tall buildings are those of minimum 60 meter height measured from the lowest A ground level, excluding basement stories completely underground and surrounded with high-A stiffness peripheral walls all around. A

A

**1.3.1.2** – Buildings other than those described in **1.3.1.1** are defined as low- to medium-rise A buildings. A

Α

# 1.3.2. Performance levels and ranges A

A

Performance levels of low- to medium-rise and/or tall buildings, whereever applicable, are A defined below with respect to estimated damage levels in earthquakes. A

Α

1.3.2.1 – Immediate Occupancy – Minimum Damage IO – MD Per ormance Level describes A a Aperformance Acondition Auch Ahat Ano Attructural Arr Anonstructural Alamage Awould Accur An A buildings and in their elements under the effect of an earthquake or, if any, the damage would A be Avery Aimited. An Ahis Acondition, Ahe Abuilding Acan Abe Accupied Aninterruptedly And Ahe A problems, if any, can be fixed in a few days. f

A

1.3.2.2 – Li e Sa ety – Controlled Damage LS – CD) Per ormance Level describes As A performance condition where limited and repairable structural and nonstructural damage is A permitted An Abuildings And An Aheir Aslements Ander Ahe Astfect As f An Asarthquake. An Ahis A condition, short term a few weeks or months problems related to occupancy of the building A may be expected. A

Δ

**1.3.2.3** – Collapse Prevention – Extensive Damage CP - ED Per ormance Level describes a A performance condition where extensive damage may occur in buildings and in their elements A under the effect of an earthquake prior to the collapse of the building. In this condition, long A term problems Arelated to Accupancy Arf the buildings Arnay Accur Ar the Accupancy Arf the A buildings may be terminated. A

A

1.3.2.4 – The Alegions An Abetween Albe Above-defined Aberformance Alevels Are Adentified As A per ormance ranges as indicated in a strength – typical deformation curve Fig. 1.2). The A region below IO – MD) Performance Level is defined as Immediate Occupancy / Minimum f Damage Per ormance Range, the region in between IO – MD) Performance Level and LS – A CD) Performance Level is defined as Li e Sa ety / Controlled Damage Per ormance Range, A the region in between LS – CD) Performance Level and CP – ED) Performance Level is A defined as Collapse Prevention / Extensive Damage Per ormance Range and the region above A the (CP – ED) Performance Level is defined as Collapse Range. A

A

A

Α

A





Figure 1.2. Performance levels and ranges A

A

# 1.3.3. Minimum performance objective for low- to medium-rise buildings A

**1.3.3.1** A AMinimum Aperformance Abjective Afor Aow- Ao Anedium-rise Abuildings Avith An A Importance Factor of *I* 1.0 according to **Table 2.1** is identified as *Li e Sa ety / Controlled f Damage Per ormance Objective* under (E2 level earthquake specified in **1.2**. Without any A analytical verification, it is implicitly assumed that a building designed to this performance A objective would automatically satisfy *Immediate Occupancy /Minimum Damage Per ormance f Objective* under E1) level earthquake as well as *Collapse Prevention / Extensive Damage f Per ormance Objective* under (E3) level earthquake. A

A

**1.3.3.2** A AMinimum Aperformance Abjective Afor Alow- Ato Amedium-rise Abuildings Awith Alon A Importance Factor of *I* 1.5 according to **Table 2.1** is identified as *Immediate Occupancy / f Minimum Damage Per ormance Objective* under AE2) Aevel Aearthquake Apecified An A.2. A Without any analytical verification, it is implicitly assumed that a building designed to this A performance Abjective Awould Aautomatically Asatisfy ALi ef Sa ety f/f Controlled f Damage f Per ormance Objective under (E3) earthquake level earthquake. A

A

**1.3.3.3** A AMinimum Aperformance Abjective Afor Alow- Ato Amedium-rise Abuildings Awith Ann A Importance Factor between I = 1.0 and I = 1.5 according to **Table 2.1** is identified as in A between Immediate Occupancy / Minimum Damage Per ormance Objective and Li e Sa ety / f Controlled Damage Per ormance Objective under (E2) level earthquake specified in **1.2**. A

A

**1.3.3.4** – Upon the requirement of the Owner or the relevant State Authority, the above-given A minimum performance objectives for special low- to medium-rise buildings may be enhanced A by assigning higher importance factors within the limits of **Table 2.1**. A

A

# 1.3.4. Multiple minimum performance objectives for tall buildings A

Α

Minimum performance objectives identified for tall buildings are given below **Table 1.2** A depending upon the earthquake levels defined in **1.2**: A

A

**1.3.4.1** – The multiple performance objectives of tall buildings in *Normal Occupancy Class* A residence, hotel, office building, etc.) are identified as *Immediate Occupancy / Minimum f Damage fPer ormance fObjective f*under AE1 Aevel Aearthquake, ALi ef Sa ety f/fControlled f

Damage Per ormance Objective under AE2) Aevel Asarthquake, And ACollapse APrevention AA Extensive Damage Per ormance Objective under (E3) level earthquake. A

Δ

1.3.4.2 – The performance objectives of tall buildings in *Special Occupancy Class* health, A education, Apublic Administration Apuildings, Act.) Are Adentified As Ammediate Occupancy /f Minimum Damage Per ormance Objective under AE2) Aevel Acarthquake, And ALi e Sa ety /f Controlled Damage Per ormance Objective under (E3) level earthquake. A

A

1.3.4.3 – AUpon Ahe Aequirement Aof Ahe AOwner Aor Ahe Aelevant Astate A uthority, Anigher A performance objectives, such as those given in 13.4.2, may be identified for tall buildings in A Normal Occupancy Class (residence, hotel, office building, etc. instead of those defined in A 1.3.4.1. A

A

Tablo 1.2. Minimum performance objectives identified for tall buildings A under various earthquake levels A

| Building Occupancy A<br>Class A                                                 | E1) A<br>Earthquake A<br>Level A | E2) A<br>A Earthquake A<br>Level A | E3) A<br>Earthquake A<br>Level A |
|---------------------------------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------|
| Normal occupancy class: A<br>Residence, hotel, office A<br>building, etc. A     | IO / MD A                        | LS / CD A                          | CP / ED A                        |
| Special occupancy class: A Health, education, public A admin. buildings, etc. A | — A                              | IO / MD A                          | LS / CD A                        |

A A A A A A A A A A A A A A A A A A A A A

A A A

A

# 1.4. GENERAL GUIDELINES FOR ARRANGEMENT OF BUILDING A STRUCTURAL SYSTEMS A

A

# 1.4.1. Structural simplicity A

A

**1.4.1.1** – Structural simplicity is characterised by the existence of clear and direct paths for A the transmission of the seismic forces. A

A

**1.4.1.2** – Modeling, analysis, dimensioning, detailing and construction of simple structures A are subject to much less uncertainty and thus the prediction of their seismic behaviour is much A more reliable. A

A

# 1.4.2. Uniformity, symmetry and redundancy A

Α

1.4.2.1 – Uniformity in plan is characterised by an even distribution of the structural elements A which allows direct transmission of the inertia forces created in the distributed masses of the A building. Aff Anecessary, Aniformity Anay Ane Anealised Any Anubdividing Ahe Antire Anuilding Any A seismic joints into dynamically independent Anits, provided that these joints are designed A against pounding of the individual units in accordance with 2.7.2. A

A

**1.4.2.2** – Uniformity in the development of the structure along the height of the building is A also essential, as it tends to eliminate the occurrence of sensitive zones where high stress or A ductility demands might concentrate. A

Α

**1.4.2.3** − **A** similarity between the distribution of masses and the distribution of resistance and A stiffness eliminates large eccentricities between mass and stiffness. A

Α

**1.4.2.4** – If the building configuration is symmetrical or quasi-symmetrical, a symmetrical A layout of structural elements, which should be well-distributed in-plan, is appropriate for the A achievement of uniformity. A

Α

**1.4.2.5** – The use of evenly distributed structural elements increases redundancy and allows a A more favourable redistribution of action effects and widespread energy dissipation across the A entire structure. A

A

### 1.4.3. Adequate resistance and stiffness A

A

1.4.3.1 – Horizontal seismic motion is a bi-directional phenomenon and thus the building A structure shall be able to resist horizontal actions in any direction. In this respect, structural A elements Ahould Are Arranged An An Arthogonal An-plan Atructural Apattern, Ansuring Aimilar A resistance and stiffness characteristics in both main directions. A

Α

1.4.3.2 — In addition to lateral resistance and stiffness, building structures should possess A adequate Aorsional Assistance And Atiffness An Aorder Ao Aimit Ahe Alevelopment Aof Aorsional A motions which tend to stress the different structural elements in a non-uniform way. In this A respect, arrangements in which the main elements resisting the seismic action are distributed A close to the periphery of the building present clear advantages. A

A

A

A

Α

# 1.4.4. Diaphragm action A

Α

**1.4.4.1** – In buildings, floors (including the roof play a very important role in the overall A seismic behaviour of the structure. They act as horizontal diaphragms that collect and transmit A the inertia forces to the vertical structural systems and ensure that those systems act together A in resisting the horizontal seismic action. The action of floors as diaphragms is especially A relevant in cases of complex and non-uniform layouts of the vertical structural systems, or A where systems with different horizontal deformability characteristics are used together (e.g. in A dual or mixed systems). A

Α

1.4.4.2 – Floor systems and the roof should be provided with in-plane stiffness and resistance A and with Affective Aronnection to the vertical structural systems. Particular Arare should be A taken in cases of non-compact or very elongated in-plan shapes and in cases of large floor A openings, especially if the latter are located in the vicinity of the main vertical structural A elements, Ahus Anindering Aruch Arffective Aronnection Aretween Ahe Avertical And Anorizontal A structure. A

A

1.4.4.3 A ADiaphragms Ashould Anave Asufficient An-plane Astiffness Afor Ashe Adistribution A of A horizontal inertia forces to the vertical structural systems in accordance with the assumptions A of Ashe Analysis, Aparticularly Ashen Ashere Agre Asignificant Ashanges An Astiffness Asr Asffsets Asf A vertical elements above and below the diaphragm. A

Α

**1.4.4.4** – The diaphragm may be taken as being rigid, if, when it is modeled with its actual in-A plane flexibility, its horizontal displacements nowhere exceed those resulting from the rigid A diaphragm Assumption Aby Amore Athan Al 0% Aof Athe Acorresponding Aabsolute Ahorizontal A displacements under seismic loads. A

Δ

#### 1.4.5. Adequate foundation A

A

**1.4.5.1** – With regard to the seismic action, the design and construction of the foundations and A of the connection to the superstructure shall ensure that the whole building is subjected to a A uniform seismic excitation. A

Α

**1.4.5.2** – For buildings with individual foundation elements footings or piles), the use of a A foundation slab or tie-beams between these elements in both main directions is recommended. A

A

A

A A

A

A

A

A

A

#### 1.5. REGULARITY REQUIREMENTS A

A

Regularity requirements of building structural systems are indirectly specified through the A definition of irregular buildings. A

Α

# 1.5.1. Definition of Irregular Buildings A

A

Regarding the definition of irregular buildings, types of irregularities in plan and in elevation A are given in **Table 1.3** and relevant conditions are given in **1.5.2**. A

A

# 1.5.2. Conditions for Irregular Buildings A

Α

Conditions related to irregularities defined in **Table 1.3** are given below: A

Α

1.5.2.1 – Irregularity types A1 and B2 govern the selection of the method of seismic analysis A as specified in 2.2.2.1. A

A

**1.5.2.2** – In buildings with irregularity types A2 and A3, it shall be verified by calculation that A the floor systems are capable of safe transfer of seismic loads between vertical structural A elements. A

Α

**1.5.2.3** – In buildings with irregularity type **B1**, in the range  $0.60 \le \eta_{ci min} < 0.80$ , *Behaviour f Factor*, given in **Chapter 3** or **Chapter 4**, as appropriate, shall be multiplied by 1.25  $\eta_{ci min A}$  which shall be applicable to the entire building in both earthquake directions. In no case, A however,  $\eta_{ci} < 0.60$  shall be permitted. Otherwise strength and stiffness of the weak storey A shall be increased and the seismic analysis shall be repeated. A

A

- 1.5.2.4 Conditions related to buildings with irregularities of type **B3** are given below: A
- **a)** With the exception of paragraph **b** below, all internal force components induced by A seismic loads shall be increased by 50% for beams and columns supporting discontinuous A vertical elements. A
- **b** Structural walls shall in no case be permitted in their own plane to rest on the beam span A or on slabs at any storey of the building. A

Α

Α

A A

A A

A

A

A A

Α

A

A A

Α

A

 $\begin{array}{c} Table \ 1.3-Irregular \ Buildings \ A \\ A \end{array}$ 

| - IRREGULARITIES IN PLAN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Related Items                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A<br>A<br>A<br>1.5.2.1 A<br>A |
| Storey dri ts shall be calculated in accordance with <b>2.3</b> , by $f$ considering the ef ects $o \pm \%5$ accidental eccentricities. A                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| 2 – Floor Discontinuities: A In any floor; A I - The case where the total area of the openings including those of A stairs and elevator shafts exceeds 1/3 of the gross floor area, A II – The cases where local floor openings make it difficult the safe A transfer of seismic loads to vertical structural elements, A III – The cases of abrupt reductions in the in-plane stiffness and A strength of floors. A                                                                                                                                                                           | A<br>A<br>A<br>1.5.2.2 A<br>A |
| 3 – Projections in Plan: A The cases where projections beyond the re-entrant corners in both of A the two principal directions in plan exceed the total plan dimensions A of the building in the respective directions by more than 20%. A                                                                                                                                                                                                                                                                                                                                                     | 1.5.2.2 A                     |
| B – IRREGULARITIES IN ELEVATION A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D.1.4.114                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Related Items A               |
| B1 – Interstorey Strength Irregularity <i>Weak Storey</i> ): A In reinforced concrete buildings, the case where in each of the A orthogonal earthquake directions, <i>Strength Irregularity Factor</i> $\eta_{ci}$ , A which is defined as the ratio of the shear strength of any storey to A the shear strength of the storey immediately above, is less than 0.80. A [ $\eta_{ci} = V_i / V_{i+1} < 0.80$ ] A <i>Shear strength o a storey is the sum o design shear strengths o f vertical elements according to</i> <b>Chapter 3</b> <i>or</i> <b>Chapter 4</b> , <i>as f appropriate.</i> | A<br>A<br>A                   |
| B1 – Interstorey Strength Irregularity <i>Weak Storey</i> ): A In reinforced concrete buildings, the case where in each of the A orthogonal earthquake directions, <i>Strength Irregularity Factor</i> $\eta_{ci}$ , A which is defined as the ratio of the shear strength of any storey to A the shear strength of the storey immediately above, is less than 0.80. A [ $\eta_{ci} = V_i / V_{i+1} < 0.80$ ] A <i>Shear strength o a storey is the sum o design shear strengths o f vertical elements according to</i> <b>Chapter 3</b> <i>or</i> <b>Chapter 4</b> , <i>as f</i>              | A<br>A<br>A<br>1.5.2.3 A      |

A A

#### 1.6. PRIMARY AND SECONDARY SEISMIC MEMBERS A

A

# 1.6.1. Primary members A

Α

Il structural members not designated as being secondary seismic members according to **1.6.2** A are taken as being primary seismic members. They shall be taken as being part of the lateral A force resisting system, and designed and detailed for earthquake resistance in accordance with A the rules of **Chapters 3,4** and **5**. A

A

# 1.6.2. Secondary members A

Α

1.6.2.1 — Certain Atructural Amembers Ae.g. Abeams And/or Atolumns) Amay Abe Alesignated As A secondary seismic members or elements), not forming part of the seismic action resisting A system of the building. The strength and stiffness of these elements against seismic actions A shall be neglected. They do not need to conform to the requirements of Chapters 3,4 and 5. A Nonetheless these members and their connections shall be designed and detailed to maintain A support Aof Agravity Aloading Awhen Asubjected Ato Athe Adisplacements Acaused Aby Athe Amost A unfavourable seismic design condition. Allowance of second-order effects shall be made in A the design of these members. A

A

**1.6.2.2** – Total contribution to lateral stiffness of all secondary seismic members shall not A exceed 15% of that of all primary seismic members. A

Α

**1.6.2.3** – The designation of some structural elements as secondary seismic members is not A allowed to change the classification of the structure from non-regular to regular as described A in **1.5**. A

A

A

A

A A

A

A

A

A A

A

A

A

A

A A

A

A

A

A

# CHAPTER 2 A SEISMIC ANALYSIS REQUIREMENTS OF BUILDINGS A

# 2.1. PARAMETERS OF DESIGN RESPONSE SPECTRUM A

A

# 2.1.1. Importance Factors A

A

Depending on purpose of occupancy of building, *Building Importance Factors* (*I*) are defined A as given in **Table 2.1**. A

Table 2.1 – Building Importance Factors I) A

| Purpose of Occupancy of Building A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I)A             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <ul> <li>a) Buildings required to be utilised immediately after the earthquake A Hospitals, dispensaries, health wards, fire fighting buildings and A facilities, PTT and other telecommunication facilities, transportation A stations and terminals, power generation and distribution facilities, A governorate, county and municipality administration buildings, first A aid and emergency planning stations) A</li> <li>b) Buildings containing or storing toxic, explosive and/or flammable A materials, etc. A</li> </ul> | A<br>1.5 A<br>A |
| <ul> <li>a) Schools, other educational buildings and facilities, dormitories A and hostels, military barracks, prisons, etc. A</li> <li>b) Museums A</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | A<br>1.4 A<br>A |
| Sport facilities, cinema, theatre and concert halls, etc. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2 A           |
| Buildings other than above-defined buildings. (Residential and A office buildings, hotels, building-like industrial structures, etc. A                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 A           |

A A

#### 2.1.2. Seismic Load Reduction Factors A

A

**2.1.2.1** – Elastic seismic loads determined in terms of spectral accelerations defined in **1.2** A shall be divided to below-defined Seismic Load Reduction Factor to account for the ductile A behaviour Aof Ahe Astructural Asystem Aduring Acarthquake. APeriod-dependent ASeismic fLoad f Reduction Factor,  $A_{\rm RR}$  T, shall be determined by Eqs.(2.1) in terms of Behaviour Factor, q, A representing the ductility capacity of the structure and the Building Importance Factor, I, f indicating the performance objective of the building. A

$$q_{RA}T = 1 + \underbrace{q_{RA}T}_{OF} - 1 \underbrace{q_{SA}}_{OF} \qquad (0 \text{ } Tf \leq T_{S})$$

$$q_{R}T = 1 + \underbrace{q_{SA}T}_{OF} - 1 \underbrace{q_{SA}T}_{OF} \qquad (0 \text{ } Tf \leq T_{S})$$

$$q_{R}T = 1 + \underbrace{q_{SA}T}_{OF} - 1 \underbrace{q_{SA}T}_{OF} \qquad (0 \text{ } Tf \leq T_{S})$$

$$q_{R}T = 1 + \underbrace{q_{SA}T}_{OF} - 1 \underbrace{q_{SA}T}_{OF} \qquad (0 \text{ } Tf \leq T_{S})$$

$$q_{R}T = 1 + \underbrace{q_{SA}T}_{OF} - 1 \underbrace{q_{SA}T}_{OF} \qquad (0 \text{ } Tf \leq T_{S})$$

$$q_{R}T = 1 + \underbrace{q_{SA}T}_{OF} - 1 \underbrace{q_{SA}T}_{OF} \qquad (0 \text{ } Tf \leq T_{S})$$

where q/I) ratio shall not be taken less than unity. A **A** 

A

2.1.2.2 – Behaviour Factors are given in Chapter 3 for various types of reinforced concrete A buildings, An AChapter 4 Afor Astructural Asteel Abuildings And An AChapter 5 Afor Asomposite A concrete-steel buildings. A

. A

# 2.1.3. Design Response Spectrum A

A

Reduced spectral accelerations representing the *Design Response Spectrum* shall be defined A by Alividing Ahe Ælastic Response Spectrum Ardinates Agiven An A.2.2 Ao Ahe Ælastic Load f Reduction Factor given in 2.1.2. A

$$\mathbf{A} \qquad \qquad Sf_{\mathrm{RA}}T = \mathbf{A} \frac{Sf_{\mathrm{E}} T}{q_{\mathrm{RA}}T A}$$
 2.2)  $\mathbf{A}$ 

A

A

#### 2.2. SEISMIC ANALYSIS A

A

#### 2.2.1. Applicable analysis methods A

A

The analysis methods applicable for the seismic analysis of building structural systems are A given in the following: A

A

**2.2.1.1** – Equivalent Seismic Load Method described in **2.3** is the simplified single-mode A response-spectrum analysis method, which can be used for low- to medium-rise buildings A with conditions given in **2.2.2**. A

A

**2.2.1.2** – *Multi-Mode Response Spectrum Analysis Method* described in **2.4** is an advanced A linear dynamic analysis method, which can be used for both low- to medium-rise as well as A tall buildings. A

A

**2.2.1.3** – *Linear Response History Analysis Method* described in **2.5.1** is the most advanced A linear dynamic analysis method, which can be used for both low- to medium-rise as well as A tall buildings. A

A

**2.2.1.4** – Nonlinear Response History Analysis Method Alescribed An A.5.2 is Ahe Amost A advanced nonlinear dynamic analysis method, which can be used for both low- to medium-A rise and tall buildings. A

Α

# 2.2.2. Selection of analysis method for low- to medium-rise buildings A

Α

**2.2.2.1** – Equivalent Seismic Load Method can be used for structures with  $H_N \le 40$  m provided A that type A2 torsional irregularity factor in any story does not exceed 2  $\eta_{ti} \le 2$  – see **Table A** 1.3) type B2 irregularity does not exists with reference to 1.5. A

Α

**2.2.2.2** – *Multi-Mode Response Spectrum Analysis Method* is the acceptable analysis method A for all low- to medium-rise buildings. A

Α

#### 2.2.3. Definition of seismic mass A

Α

Total seismic mass of the building,  $M_t$ , shall be determined by Eq.(2.3): A

$$\mathbf{A} \qquad Mf_{\mathrm{IA}} = A + \sum_{gf}^{N} \sum_{i=1}^{N} W_{iA} \qquad ; \qquad W_{iA} = Gf + \alpha_{f} n_{f} Qf_{f} A \qquad \mathbf{2.3)} \mathbf{A}$$

where live load mass reduction factor  $n_1$  and live load participation factor  $n_2$  shall be taken A from **Table 2.3** and **Table 2.4**, respectively. A

Α

Table 2.3 – Live load mass reduction factor  $n_1$  A

| Type of occupancy A                    | nf.    |
|----------------------------------------|--------|
| Storeys with correlated occupancies A  | 0.80 A |
| Storeys with independent occupancies A | 0.30 A |

Α

Α

# 2.2.4. Consideration of vertical component of earthquake A

Α

- **2.2.4.1** Vertical component of the seismic action, as defined in **1.2.2.4**, shall be taken into A account for the cases listed below: A
- a) Horizontal or nearly horizontal structural members spanning 20 m or more; A
- **b** Horizontal or nearly horizontal cantilever components longer than 5 m; A
- c) Horizontal or nearly horizontal pre-stressed components; A
- d Beams supporting columns. A

Δ

**2.2.4.2** – The analysis for determining the effects of the vertical component of the seismic A action may be based on a partial model of the structure, which includes the elements on which A the vertical component is considered to act e.g. those listed in **2.2.4.1**) and takes into account A the stiffness of the adjacent elements. A

Α

2.2.4.3 — The Asffects Asf Ashe Avertical Asomponent Aseed Ase Asken Anto Account Asnly Asor Ashe A elements Aunder Asonsideration Ase.g. Ashose Assted An A.2.4.1 And Asheir Adirectly Associated A supporting elements or substructures. A

A

A

A

A A

Α

A A

Α

A

Α

A

A

A A

A

A

A

A

A A

A

A

A

A

A

A A

A

**A A** 

#### 2.3. EQUIVALENT SEISMIC LOAD METHOD A

A

# 2.3.1. Displacement Components and Application Points of Seismic Loads A

A

2.3.1.1 A- AWhere Alloors Aact Aas Arigid Ahorizontal Adiaphragms, Atwo Alateral Adisplacement A components and the rotation around the vertical axis shall be taken into account at each floor A as Andependent Atlatic Alisplacement Atomponents. A t Alach Alloor, Acquivalent Aleismic Aloads A determined in accordance with 2.3.3 shall be applied to the floor mass centre as well as to the A points defined by shifting it +5% and -5% of the floor length in the perpendicular direction to A the earthquake direction considered in order to account for the accidental eccentricity ef ects. A

2.3.1.2 — Where Alloors Allo Anot Act As Aigid Anorizontal Aliaphragms, Asufficient Anumber Asf A independent static displacement components shall be considered to account for the in-plane A deformation of floors. A

Α

#### 2.3.2. Base Shear A

Α

Total equivalent seismic load, i.e., the base shear,  $V_b$ , in the earthquake direction considered A shall be calculated by Eq.(2.4): A

A 
$$V_{\text{bA}} = M_{\text{tA}} S f_{\text{R}} T_{1} A \approx 0.0 \text{ All } M f_{\text{S}} S_{\text{SDA}} I A$$
 2.4) A

where design spectral acceleration  $Sf_R$   $T_1$ ) and elastic short period spectral acceleration  $S_{SD}$  A correspond Ao A(E2) Aevel Aearthquake. APredominant Anatural Aperiod Ain Athe Adirection Aof A earthquake,  $T_1$ , shall be calculated in accordance with **2.3.4.** A

A

#### 2.3.3. Storey Seismic Loads A

Α

2.3.3.1 – Total equivalent seismic load determined by Eq.(2.4) is expressed by Eq. 2.5) as A the sum of seismic loads acting at storey levels. A

$$V_{b} = \Delta F_{N} + \sum_{i=1}^{NA} G_{iA} A$$
 2.5) A

**2.3.3.2** – The *additional equivalent seismic load*,  $\Delta F_{\rm N}$ , acting at the N'th storey roof) of the A building shall be determined by **Eq.(2.6)**. **A** 

**A** 
$$\Delta F_{\rm N} = 0.0075 \, N V_{\rm b} \, A$$
 **2.6) A**

Excluding  $\Delta F_N$ , remaining part of the total equivalent seismic load shall be distributed to A stories of the building including N'th storey) in accordance with Eq.(2.7). A

$$\mathbf{A} \qquad F_{i} = (V_{f} - \Delta F_{f}) \underbrace{A}_{NA} \underbrace{A}_{NA} \underbrace{H_{i}}_{NA} \mathbf{A}$$

$$\sum_{k=1}^{N} dW_{k} H_{kA}$$
2.7) A

2.3.3.3 – In the case where torsional irregularity defined in **Table 1.3** exists at any i'th storey A such that the condition  $1.2 < \eta_{ti} \le 2.0$  is satisfied,  $\pm 5\%$  accidental eccentricity applied to this A floor According to **A.3.1.1** shall be Amplified by Anultiplying Avith Accefficient  $D_i$  given by A **Eq.(2.8)** for each earthquake direction. A

$$D_{i} = \left(\frac{\eta_{tiA}}{1.2}\right)_{0}^{2/2} A$$
 2.8) A

- **2.3.3.4** In buildings with very stiff reinforced concrete peripheral walls at their basements, A equivalent seismic loads acting on stiff basement stories and those acting on relatively flexible A upper stories shall be calculated separately as given in **a)** and **b** below. Such loads shall be A combined for the analysis of the complete structural system. A
- a) In determining the base shear and equivalent storey seismic loads acting on relatively A flexible upper stories, Clauses 2.3.2 and 2.3.3 shall be applied with seismic masses of *upper f stories only* taken into account. Foundation top level considered in the relevant definitions and A expressions Ashall Ase Aeplaced Asy Ashe Aground Asloor Aevel. As Fictitious Assass Assed Asor Ashe A calculation of the first natural vibration period in accordance with 2.3.4.2 shall also be based A on seismic masses of *upper stories only*. Appropriate behaviour factor q shall be selected from A Chapter 3 or Chapter 4, as appropriate, based on the structural type of the *upper stories f only*. A
- **b** In calculating equivalent seismic loads acting on the stiff basement stories, seismic masses A of *Ibasements only* Ahall Abe Aaken Anto Account. Æquivalent Aeismic Aboads Acting Abn Abach A basement Astorey Ashall Abe Acalculated Avith Aelastic Aspectral Acceleration Abf  $A0.4S_{DS}$  Abo Abe A multiplied directly with the respective storey mass, and the resulting elastic loads shall not be A reduced i.e.,  $q_R = 1$ ). A
- c) An Ahe Analysis A of Ahe A complete A tructural A ystem Ander Ahe A combined Action A of Ahe A equivalent seismic loads as defined in a) and b above, interaction with the soil surrounding A basement stories may be considered with an appropriate soil modeling. A
- **d** In-plane strength of ground floor system, which is surrounded by very stiff basement A walls and located in the transition zone with the upper stories, shall be checked for internal A forces obtained from the analysis according to **c**) above. A

#### 2.3.4. Predominant period A

Α

**2.3.4.1** – Predominant natural vibration period of the building in the earthquake direction,  $T_1$ , A may be approximately estimated by the following expression: A

**A** 
$$T_1 = C_t H_N^{3/4} A$$
 **2.9) A**

 $C_t$  may be taken As 0.085 for Amoment Assistant Ateel frames, 0.075 for Amoment Assistant A concrete frames / eccentrically braced steel frames and 0.050 for all other structures. For A structures with concrete structural walls  $C_t$  may be calculated by Eq.(2.10). A

$$A C_{t} = \frac{0.075}{\sqrt{Af_{A}}} A 2.10) A$$

where  $A_c$  is calculated from Eq.(2.11). A

**A** 
$$A_{\rm c} = \sum_{\rm jA} [A_{\rm j} \ 0.2 + l_{\rm wj}/H_{\rm N}^{2}]$$
 **A 2.11) A**

with the condition that  $l_{\rm wj}/H_{\rm NA} \le 0$  **A**. A

**2.3.4.2** – Predominant natural vibration period of the building in the earthquake direction,  $T_1$ , A shall not be taken longer than the value calculated by **Eq.(2.12)**. A

A

$$T_{1} = 2\pi \begin{pmatrix} \frac{\omega_{i}^{NA}}{\omega_{i}^{MA}} d_{fiA}^{2A} \\ \frac{\omega_{i}^{DA}}{\omega_{i}^{DA}} d_{fiA} \\ \frac{\omega_{i}^{DA}}{\omega_{i}^{DA}} d_{fiA} \end{pmatrix}_{\omega}^{1/2} A$$
2.12) A

Fictitious load  $F_{\rm fi}$  acting on the i'th storey may be obtained from Eq.(2.7) by substituting any A value (Aor example a unit value) in place of  $(V_b - \Delta F_N \cdot \mathbf{A})$ 

A

# 2.3.5. Directional Combination A

2.3.5.1 – The maximum value of each response quantity due to two horizontal components of A the earthquake may be estimated by the square root of the sum of the squared values of the A response quantities calculated due to each horizontal component. A

A A A A A A A A A

2.3.5.2 – As an alternative to 2.3.5.1, the combination procedure given by Eq.(2.13) may be A e

| employed: A | tive to 2.3.3.1, the combination procedure given t                | by Eq.(2.13) may be A |
|-------------|-------------------------------------------------------------------|-----------------------|
| A           | $Qf_0 = \pm Qf_A \pm 0.30 Q_y$ $Qf_A = \pm 0.30 Qf_A \pm Q_{y}$ A | 2.13) A               |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A<br>A      |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |
| A           |                                                                   |                       |

#### 2.4. MULTI-MODE RESPONSE SPECTRUM ANALYSIS METHOD A

Α

In this method, maximum internal forces and displacements are determined by the statistical A combination of maximum contributions obtained in Aufficient number of natural vibration A modes to be considered. A

Α

# 2.4.1. Dynamic degrees of freedom A

A

**2.4.1.1** – In buildings where floors behave as rigid horizontal diaphragms, two horizontal A degrees As f Aireedom An Aperpendicular Adirections And As Asotational Adegree As f Aireedom Awith A respect to the vertical axis passing through mass centre shall be considered at each storey. At A each floor, modal seismic loads defined for those degrees of freedom shall be applied to the A floor mass centre as well as to the points defined by shifting it +5% and -5% of the floor A length in the perpendicular direction to the earthquake direction considered. The latter is to A account for the accidental eccentricity of ects. A

A

**2.4.1.2** – In buildings where torsional irregularity exists and floors do not behave as rigid A horizontal diaphragms, sufficient number of dynamic degrees of freedom shall be considered A to model in-plane deformation of floors. A

A

#### 2.4.2. Modal seismic loads A

A

2.4.2.1 – In a typical n'th vibration mode considered in the analysis, modal seismic loads A acting Ann Ahe A'th Astory Aevel Ast Ahe Amass Asentre Anf Ahe Asloor Asliaphgram As Asxpressed Any A Eqs. (2.14). A

$$F_{f_{\text{inA}}} = M_{\text{iA}} \Phi_{\text{xinA}} \Gamma_{Q_{\text{iA}}} S_{\text{R}} T_{f_{\text{iA}}}$$

$$F_{f_{\text{inA}}} = M_{f_{\text{iA}}} \Phi_{Q_{\text{inA}}} \Gamma_{Q_{\text{iA}}} S_{f_{\text{R}}} T_{f_{\text{iA}}} A$$

$$F_{\theta_{\text{inA}}} = M_{\theta_{\text{iA}}} \Phi_{\theta_{\text{inA}}} \Gamma_{Q_{\text{iA}}} S_{f_{\text{RA}}} T_{f_{\text{iA}}} A$$

$$2.14) A$$

where  $A \Gamma_{\Omega_h}$  represents the participation factor of the n'th mode under an eartquake ground A motion in x direction. For buildings with rigid floor diaphragms  $\Gamma_{\Omega_h}$  is defined as A

$$\Gamma_{\Omega_{A}} = \frac{A f_{nA}}{M f_{nA}} A \qquad 2.15) A$$

in which  $L_{\rm xn}$  and  $M_{\rm n}$  are as expressed in 2.4.3. A

- **2.4.2.2** In buildings with very stiff reinforced concrete peripheral walls at their basements, A unless a full modal analysis of the structural system is performed, modal seismic loads as A defined in **2.4.2.1** acting on stiff basement stories and those acting on relatively flexible A upper stories may be calculated separately as given in **a**) and **b** below. A
- a) In calculating modal seismic loads acting on relatively flexible upper stories, the lowest f vibration modes that Are Affective in the Apper Atories may be Aonsidered, Awhich Aran be A achieved by taking into account the seismic masses of the upper stories only. In this case, A appropriate behaviour factor q must be selected from Chapter 3 or Chapter 4, as appropriate, A based on the structural type of the upper stories only. A
- **b** In determining modal seismic loads acting on stiff basement stories, *the highest vibration f modes* that are effective in the basements may be considered, which can be achieved by taking A

into account the seismic masses of the *basement stories only*. In this case, resulting elastic A modal loads should not be reduced (i.e.,  $q_R = 1$ ). A

c) Since vibration modes affecting the stiff basement stories and flexible upper stories are A expected to be far apart, two separate response spectrum analyses may be performed based on A modal seismic loads defined in a) and b above. In each of those analyses, interaction with A the soil surrounding basement stories may be considered with an appropriate soil modeling. A The results of such analyses may be directly superimposed. A

**d** In-plane strength of ground floor system, which is surrounded by very stiff basement A walls and located in the transition zone with the upper stories, shall be checked for internal A forces obtained from the analysis explained in **c**) above. A

Α

#### 2.4.3. Number of Vibration Modes A

A

Suf icient number of vibration modes, NS, to be taken into account in the analysis shall be A determined to the criterion that the sum of effective participating masses calculated for each A mode in each of the given x and y perpendicular lateral earthquake directions shall in no case A be less than 90% of the total building mass. A

A
$$\sum_{n=1}^{NSA} \mathcal{M}_{xnA} = \sum_{n=1}^{NSA} \mathcal{L}_{xnA}^{2A} \ge 0.90 \sum_{i=1}^{NA} \mathcal{M}_{iA}^{A}$$

$$\sum_{n=1}^{NSA} \mathcal{M}_{ynA} = \sum_{n=1}^{NSA} \mathcal{L}_{ynA}^{2A} \ge 0.90 \sum_{i=1}^{NA} \mathcal{M}_{iA}^{A}$$

$$\sum_{n=1}^{NSA} \mathcal{M}_{ynA} = \sum_{n=1}^{NSA} \mathcal{L}_{ynA}^{2A} \ge 0.90 \sum_{i=1}^{NA} \mathcal{M}_{iA}^{A}$$
2.16) A

Expressions Afor  $A_{xn}$   $A_{yn}$  And Anodal Anass  $AM_n$  Ashown An  $A_{xn}$   $A_{yn}$  are Agiven Aselow Afor A buildings with rigid floor diaphragms: A

$$\mathbf{A} \qquad Lf_{\mathbf{n}\overline{\mathbf{A}}} = \sum_{i=1}^{N} dM_{i} \Phi_{\mathbf{xin}\mathbf{A}} ; \qquad Lf_{\mathbf{y}\overline{\mathbf{A}}} = \sum_{i=1}^{N} dM_{i} \Phi_{\mathbf{yin}\mathbf{A}}$$

$$\mathbf{A} \qquad \mathbf{A} \qquad$$

A

#### 2.4.4. Modal Combination A

Α

**2.4.4.1** – Complete Quadratic Combination CQC) Rule shall be applied for the combination A of maximum modal contributions of response quantities calculated for each vibration mode, A such as the base shear, storey shear, internal force components, displacements and storey A drifts. It is imperative that modal combination is applied independently for each response A quantity. A

Α

**2.4.4.2** – In the calculation of *cross correlation coef icients* to be used in the application of the A rule, modal damping factors shall be taken as 5% for all modes. A

Α

# 2.4.5. Scaling of Response Quantities A

Α

In the case where the base shear in the given earthquake direction,  $V_{bCx}$  or  $V_{bCy}$ , which is A obtained through modal combination according to **2.4.4**, is less than 85% of the corresponding A base Ahear,  $K_{bx}$  or  $K_{by}$ , obtained by Equivalent Seismic Load Method According to **2.3.2** A  $V_{bC} ext{A} ext{O.85} ext{V}_b$ , All Anternal Aforce And Adisplacement Aquantities Aletermined Aby Aresponse A Spectrum Analysis Method shall be amplified in accordance with Eq.(2.18). A

A

$$Qf_{xA} = A \frac{0.85 V_{bxA}}{V_{bCxA}} Q_{CxA}$$

$$Qf_{yA} = A \frac{0.85 V_{byA}}{V_{bCyA}} Q_{CyA}$$
2.18) A

In the case where  $V_{bCx}$  or  $V_{bCy}$  is not less than 85% of the corresponding base shear  $V_{bx}$  or  $V_{by}$ , A then  $Q_{Sx} = Q_{Cx}$  or  $Q_{Sy} = Q_{Cy}$  shall be used in **2.4.6**. A

A

# 2.4.6. Directional Combination A

Δ

Directional combination procedures given in **2.3.5** for Equivalent Seismic Load Method are A applicable with  $Q_x$  and  $Q_y$  replaced by  $Q_{Sx}$  and  $Q_{Sy}$ , respectively. A

A

1 1

#### 2.5. RESPONSE HISTORY ANALYSIS METHOD A

A

# 2.5.1. Linear Response History Analysis A

Α

Linear response history analysis based on *mode-superposition procedure* may be performed A in lieu of multi-mode response spectrum analysis described in **2.4**. A

Α

2.5.1.1 – The Analysis Ahall be based An A Act Af Aarthquakes Atomprising three Ar Aeven A earthquake records with simultaneously acting two horizontal components to be selected and A scaled according to 1.2.3. A

Α

2.5.1.2 – Sufficient number of vibration modes shall be used as described in 2.4.3. A

Α

**2.5.1.3** – In each analysis, linear response histories of design quantities obtained for each A typical Anode An Ashall Ase Aseduced Asy Ashe Asorresponding Aseismic Asoad Aseduction Asactor A  $q_{RA}T_{fA}$  given by Eqs.(2.1) based on elastic spectrum corner period  $T_S$ .

A

2.5.1.4 – If three ground motions are used in the analysis, the maxima of the results shall be A considered for design. If at least seven ground Anotions are used, the mean values of the A results may be considered for design. A

Α

# 2.5.2. Nonlinear Response History Analysis A

Α

Nonlinear Aesponse Anistory Analysis Anay Are Aperformed Ary Adirect Antegration Art Anonlinear A equations of motion in lieu of multi-mode response spectrum analysis described in 2.4 and A linear response history analysis described in 2.5.1. Nonlinear analysis requirements shall be A the same as those given in Chapter 5. A

A

A

A A

A

A A

A

A

A

A

A

A

A

A A

A

A

A

A

A A

A

#### 2.6. SAFETY VERIFICATION A

A

#### 2.6.1. Strength verification A

A

The following relation shall be satisfied for all structural elements including connections and A the relevant non-structural elements: A

A 
$$E_{dA} \leq cR_d$$
 A 2.19) A

where  $E_d$  is the design value of the action effect, due to load combinations defined in **2.6.2** A including, if necessary, second order effects defined in **2.6.3**, as well as due to capacity design A rules, as described in **Chapters 3** and **4**.  $R_d$  is the corresponding design resistance of the A element, calculated in accordance with the rules specific to the material used considering the A requirements of **Chapters 3** and **4**. A

A

#### 2.6.2. Load combinations for seismic design A

A

The load combinations given in **Eq.(2.20)** shall be used to define the design values of action A effects. Live load participation factor  $n_2$  is given in **Table 2.4**. A

$$\mathbf{A} \qquad \qquad \frac{E_{\mathrm{G}} + \omega n_{2} E_{\mathrm{f_{A}}} \mp E_{\mathrm{EA}}}{0.9 E_{\mathrm{G}} \mp E_{\mathrm{EA}}} \mathbf{A} \qquad \qquad \mathbf{2.20)} \mathbf{A}$$

Table 2.4 – Live load participation factor  $n_2$  A

| Loading areas A                                   | n <u>f</u> , |
|---------------------------------------------------|--------------|
| Domestic, residential and office areas A          | 0.3 A        |
| Shopping and congregation areas A                 | 0.6 A        |
| Storage areas A                                   | 0.8 A        |
| Traffic areas (vehicle weight ≤ 30 kN) A          | 0.6 A        |
| Traffic areas (30 kN < vehicle weight ≤ 160 kN) A | 0.3 A        |
| Roof areas A                                      | 0 A          |

A

#### 2.6.3. Second-Order Effects A

A

Unless a more refined analysis considering the nonlinear behaviour of structural system is A performed, second-order effects may be taken into account in accordance with **2.6.3.1**. A

**2.6.3.1** – In the case where *Second-Order Ef ect Indicator*,  $\theta_i$ , satisfies the condition given by A **Eq.(2.21)** for the earthquake direction considered at each storey, second-order effects shall be A evaluated in accordance with the currently enforced specifications of reinforced concrete or A structural steel design. A

$$\mathbf{A} \qquad \qquad \theta_{i} = \mathbf{A} \frac{\Delta \mathbf{Q}_{\text{avg}}^{\mathbf{A}} \left( \sum_{k=iA}^{\mathbf{N}A} W_{kA} \right)}{V_{i} h_{iA}} \leq \mathbf{0}.10 \text{ A}$$
 2.21)  $\mathbf{A}$ 

where  $\Delta_{i~avg}$  shall be determined in accordance with **2.7.1.1** as the average value of reduced A storey drifts,  $\Delta_{ji}$ , calculated for i'th storey columns and structural walls. A

A

- **2.6.3.2** In the case where  $0.10 \le \theta \le 0.20$ , second-order effects may approximately be taken A into account by multiplying the relevant seismic response quantity by a factor of  $1/(1-\theta)$ . A
- **2.6.3.3** In the case where  $\theta > 0.20$ , seismic analysis shall be repeated with sufficiently A increased stiffness and strength of the structural system. A

A A

#### 2.7. DAMAGE LIMITATION A

A

## 2.7.1. Limitation of story drifts A

A

**2.7.1.1** – The *reduced storey dri t*,  $\Delta_{ji}$ , of any column or structural wall shall be determined A by **Eq.(2.21)** as the difference of displacements between the two consecutive stories. A

$$\mathbf{A} \qquad \qquad \Delta_{\mathbf{i}\mathbf{i}\mathbf{A}} = d_{\mathbf{i}\mathbf{i}\mathbf{A}} - d_{\mathbf{i}(\mathbf{i}-\mathbf{1})\ell} \mathbf{A} \qquad \qquad \mathbf{2.22}) \mathbf{A}$$

where  $d_{ji}$  and  $d_{j(i-1)}$  represent lateral displacements obtained from the analysis at the j'th A column or structural wall at stories i and (i – 1 under reduced seismic loads. The minimum A equivalent seismic load condition defined by **Eq. 2.4**) and the scaling procedure described in A **2.4.5** may not be considered in the calculation of  $d_{ii}$  and  $\Delta_{ii}$ .

**2.7.1.2** – When multi-mode response spectrum analysis described in **2.4** or linear response A history analysis described in **2.5.1** is used, the *ef ective storey dri t*,  $\delta_{ji}$ , of the j'th column or A structural wall at the i'th storey of a building shall be obtained in each direction by **Eq.(2.23)**. A

$$\mathbf{A} \qquad \qquad \delta \mathbf{p} = \mathbf{A} \Delta \mathbf{p} \mathbf{A} \qquad \qquad \mathbf{2.23} \mathbf{A}$$

**2.7.1.3** – The maximum value of effective storey drifts,  $\delta_{i \text{ max}}$ , obtained in each direction for A columns or structural walls of a given i'th storey of a building shall satisfy the condition given A by **Eq.(2.24)**: A

A 
$$\frac{\delta_{\rm fA,max}A}{h_{\rm iA}}$$
 A  $\infty 0$  A 2.24) A

This limit may be exceeded by 50% in single storey frames where seismic loads are fully A resisted by steel frames with joints capable of transferring cyclic moments. A

Δ

2.7.1.4 – The Aimit Agiven Asy AEq.(2.24) Amay Ase Asxceeded Asy A20% Af Anonlinear Analysis A procedure is performed in accordance with 2.5.2. For nonlinear analysis, the displacements A determined are those obtained directly from the analysis without further modification. A

A

2.7.1.5 – In the case where the condition given in 2.7.1.3 or 2.7.1.4, whichever applicable, is A not Aatisfied Art Any Astorey As f Ashe Asuilding, Ashe Aseismic Asnalysis Ashall Ase Asepeated Awith A increased stiffness of the structural system. A

A

### 2.7.2. Seismic Joints A

A

Excluding the effects of differential settlements and rotations of foundations and the effects of A temperature change, sizes of gaps to be retained in the seismic joints between building blocks A or between the old and newly constructed buildings shall be determined in accordance with A the following conditions: A

Α

2.7.2.1 – Sizes of gaps to be provided shall not be less than the square root of sum of squares A of average storey displacements of the adjacent buildings (or buildingblocks) multiplied by A the coefficient  $\alpha_G$  specified below. Storey displacements to be considered are the average A values of reduced displacements  $d_{ji}$  calculated at the column or structural wall joints of i'th A storey. In the cases where the seismic analysis is not performed for the existing old building, A

the storey displacements shall not be assumed to be less than those obtained for the new A building at the same stories. A

a)  $\alpha_G = 0.67 \ \ q/I)$  shall be taken if all floor levels of adjacent buildings or building blocks are A the same. A

**b**  $\alpha_G = q/I$ ) shall be taken if any of the floor levels of adjacent buildings or building blocks A are not the same. A

A

**2.7.2.2** – Seismic joints shall be arranged to allow the independent movement of building A blocks in all earthquake directions. A

A

A

### 2.8. ANALYSIS REQUIREMENTS FOR NONSTRUCTURAL SYSTEMS A

A

2.8.1 – Analysis requirements for nonstructural elements in low- to medium rise buildings are A given in the following paragraphs. The relevant requirements for tall buildings are given in A 5.4. A

Α

**2.8.2** – Equivalent seismic loads to be applied to structural appendages such as balconies, A parapets, chimneys, etc. and to all architectural elements such as façade and partition panels, A etc. as well as the seismic loads to be used for the connections of mechanical and electrical A equipment to the structural system elements are given by **Eq.(2.25)**. A

A 
$${}_{e} = 0.2 S_{SD} I_{e} m_{eA} \left( \frac{\omega}{1} + 2 \frac{H f_{A}}{H_{NA}} \right) (A$$
 2.25) A

Seismic load shall be applied horizontally to the mass centre of the element concerned in a A direction to result in most unfavourable internal forces. The seismic loads to be applied to A non-vertical elements shall be half the equivalent seismic load calculated by Eq.(2.25).

- **2.8.3** For the following non-structural elements the, the *Element Importance Factor I* $_{\rm e}$  shall A not be less than 1.5: A
- a) Anchorage elements of machinery and equipment required for life safety systems, A
- **b** Tanks and vessels containing toxic or explosive substances considered to be hazardous to A the safety of the general public. A

Α

In all other cases, the  $\it Element\ Importance\ Factor\ I_e$  may be assumed to be equal to unity. A A

**2.8.4** – In the case where the sum of mechanical or electrical equipment masses, as denoted by A  $m_e$  in Eq.(2.25), exceeds  $0.2m_i$  at any i'th storey, equipment masses and stiffness properties of A their connections to the building shall be taken into account in the earthquake analysis of the A building structural system. A

A

**2.8.5** – In the case where *Aoor acceleration spectrum* is determined by appropriate methods to A define the peak acceleration at the floor where mechanical or electrical equipment is located, A **Eq.(2.25)** may not be applied. A

Δ

2.8.6 – Twice the seismic load calculated by Eq.(2.25) or determined according to 2.8.5 shall A be considered for fire extinguishing systems, emergency Alectrical systems as Avell as for A equipments connecting to infill walls and for their connections A

A

A

A

A

A A

A

A

A

# CHAPTER 3 A SEISMIC DESIGN REQUIREMENTS A FOR REINFORCED CONCRETE BUILDINGS A

A

### 3.1. SCOPE AND DESIGN CONCEPTS A

A

# 3.1.1. Scope A

A

3.1.1.1 A AThis Ashapter applies Ao Ashe Aseismic Aslesign As f Aslements As f Aseinforced Asoncrete A buildings. A

A

3.1.1.2 – The rules given in this chapter are additional to those given in EN 1992-1-1:2004. A

A

# 3.1.2. Design Concepts A

A

**3.1.2.1** A ADesign A farthquake Assistant Aseinforced Asoncrete Abuildings Ashall Aprovide Ashe A structure with an adequate energy dissipation capacity without substantial reduction of its A overall resistance against horizontal and vertical loading. Adequate resistance of all structural A elements shall be provided, and non-linear deformation demands in critical regions should be A compatible with the overall ductility assumed in calculations. A

Α

**3.1.2.2** – Reinforced concrete buildings may alternatively be designed for low dissipation A capacity and low ductility, by applying only the rules of EN 1992-1-1:2004 for the seismic A design situation, and neglecting the specific provisions given in this chapter. The class of such A buildings are identified as *Low Ductility Class* (DCL . A

Α

3.1.2.3 – Reinforced concrete buildings other than those to which 3.1.2.2 applies, shall be A designed to provide Amergy dissipation capacity and Am overall ductile behaviour. Overall A ductile behaviour is ensured if the ductility demand involves globally a large volume of the A structure Apread to different Alements And locations Af All its Atoreys. To this And ductile A modes of failure e.g. flexure) should precede brittle failure modes e.g. shear) with sufficient A reliability. The class of such buildings are identified as Normal Ductility Class DCN), for A which reinforced concrete seismic design requirements are given in the remainder of Chapter A 3. A

Α

**3.1.2.4** – Unless a more accurate analysis of the cracked elements is performed, the elastic A flexural and shear stiffness properties of reinforced concrete elements may be taken to be A equal to one-half of the corresponding stiffness of the uncracked elements. A

Α

## 3.1.3. Structural types and Behaviour Factors A

A

- **3.1.3.1** Reinforced concrete buildings are classified with respect to structural types and their A combinations as follows: **A**
- a) Moment-resisting frame system is defined as a structural system composed of moment-A resisting frames only. A
- **b** Coupled structural wall system is defined as a structural system composed of coupled A structural Avalls Aonly. ACoupled Astructural Avalls Aone Afrom Asolated Astructural Avalls A connected with relatively stiff coupling beams such that base overturning moments of isolated A walls are reduced by at least 25% under the same lateral loads. A

- **c)** Uncoupled structural wall system is defined as a structural system composed of uncoupled A isolated) structural walls only. A
- d Frame-dominant dual system is defined As A Atructural Asystem Asomposed Asf Amoment-A resisting Aframes, Awhich Aresist Amore Athan A50% Asf Athe Atotal Acalculated Abase Ashear, Ain A combination with coupled or uncoupled walls. A
- **e)** Wall-dominant dual system (coupled walls) is defined as a structural system composed of A coupled structural walls, which resist more than 50% of the total calculated base shear, in A combination with moment-resisting frames and/or uncoupled walls. A
- **f** Wall-dominant dual system uncoupled walls) is defined as a structural system composed A of uncoupled isolated) structural walls, which resist more than 50% of the total calculated A base shear, in combination with moment-resisting frames and/or coupled walls. A
- g) Inverted pendulum system in which 50% or more of the mass is in the upper third of the A height of the structure, or in which the dissipation of energy takes place mainly at the base of A a single building element. One-storey frames with column tops connected along both main A directions of the building and with the value of the column normalized axial load less than 0.3 A are excluded. A

Α

**3.1.3.2** – Reinforced concrete buildings may be classified to one type of structural system in A one horizontal direction and to another in the other direction. A

A

**3.1.3.3** – Behaviour factors for all structural types of *Low Ductility Class* (DCL shall be A taken as q = 1. A

A

**3.1.3.4** – Behaviour factors for structural types of *Normal Ductility Class* DCN) shall be A taken from **Table 3.1**. A

Α

Table 3.1 – Behaviour Factors q for reinforced concrete structural types A

| Structural type A                           | qf      |
|---------------------------------------------|---------|
| Moment resisting frame system A             | 3.5 A   |
| Coupled structural wall system A            | 3.5 A   |
| Uncoupled structural wall system A          | 2.0 A   |
| Frame-dominant dual system A                | 3.0 A   |
| Wall-dominant dual system (coupled walls) A | 3.0 A   |
| Wall-dominant dual system (uncoupled walls) | A 2.0 A |
| Inverted pendulum system A                  | 1.5 A   |

A

### 3.1.4. Design actions A

A

**3.1.4.1** – With the exception of structural walls, for which the special provisions of **3.4** apply, A the design values of bending moments and axial forces shall be obtained from the analysis of A the structure for the seismic design situation in accordance with **2.6**. A

Α

3.1.4.2 A AThe Alesign Avalues Asf Ahear Asorces Asf Abeams, Asolumns And Atructural Avalls Are A determined in accordance with 3.2, 3.3 and 3.4, respectively. A

### 3.1.5. Capacity Design Rules A

A

3.1.5.1 – Brittle failure or other undesirable failure mechanisms e.g. concentration of plastic A hinges in columns of A single storey of a multistorey building, shear failure of structural A elements, failure of beam-column joints, yielding of foundations or of any element intended to A remain elastic) shall be prevented, by deriving the design action effects of selected regions A from equilibrium conditions, assuming that plastic hinges with their possible overstrengths A have been formed in their adjacent areas. A

A

3.1.5.2 – An Amoment Assisting Arame Asystems, Ancluding Arame-dominant Asual Asystems As A defined in 3.1.3.1, the following condition should be satisfied at all beam-column joints: A

A 
$$\sum M_{RcA} \approx 01.3 \sum M_{RbA} A$$
 3.1) A

3.1.5.3 – In Arder that  $\mathbb{A}$ **q.(3.1)** is Applied, beams framing into the joint Ahall Aatisfy the A dimensional requirements given in 3.2.1 and 3.3.1. A

Α

3.1.5.4 – Slab reinforcement parallel to the beam and within the effective flange width shall A be Asonsidered Aso Asontribute Aso Ashe Aseam Allexural Asapacities Asaken Anto Ascount Asor Ashe A calculation of  $\sum M_{Rb}$  in Eq.(3.1), if it is anchored beyond the beam section at the face of the A joint. A

A

3.1.5.5 – Eq.(3.1) shall be satisfied separately for both earthquake directions and senses with A the column moments always opposing the beam moments to yield the most unfavourable A result. In calculating the column moment resistances, axial forces shall be taken to yield the A minimum moments consistent with the sense of earthquake direction. A

A

3.1.5.6 – If the structural system is a frame or equivalent to a frame in only one of the two A main horizontal directions A of the Atructural Aystem, then Eq.(3.1) should be Aatisfied just A within the vertical plane through that direction. A

Α

- 3.1.5.7 Special situations regarding the application of Eq.(3.1) are given in the following: A
- (a) Eq.(3.1) need not to be satisfied in the case where normalized axial force is  $v_d < 0.10$  in A both columns framing into the joint. A
- b) Eq.(3.1) need not to be satisfied at the base of any frame. A
- (c) Eq.(3.1) need not to be checked in single storey buildings and in joints of topmost storey A of multi-storey buildings. A

A

3.1.5.8 - Eq.(3.1) may be permitted not to be satisfied in a given earthquake direction at a A certain number of joints at the bottom and/or top of a storey, provided that Eq.(3.2) holds. A

$$\mathbf{A} \qquad \qquad \alpha_{i} = \underbrace{V_{isA}}_{V_{irA}} \ge \mathbf{0}.75 \text{ A}$$
 3.2)  $\mathbf{A}$ 

Columns with normalized axial force  $v_d < 0.10$  may be taken into account in the calculation of A  $V_{is}$  even if they do not satisfy **Eq.(3.1)**. A

Α

**3.1.5.9** – In the case where **Eq.(3.2)** holds, bending moments and shears of columns satisfying A **Eq.(3.1)** at both bottom and top joints shall be amplified by multiplying with the ratio  $1/\alpha_i$ ) A within the range of  $0.75 \le \alpha_i < 1.00$ . A

Α

# 3.1.6. Material requirements A

A

**3.1.6.1** – In buildings of both *Low Ductility Class* (DCL and *Normal Ductility Class* DCN) A reinforcing steel of class B or C in EN 1992-1-1:2004, Table C.1 shall be used. A

A

- **3.1.6.2** The following material requirements shall apply for buildings of *Nominal Ductility f Class* (DCN): A
- a) Concrete of a class lower than C 16/20 shall not be used. A
- **b** Only ribbed bars shall be used as reinforcing steel. A
- c) Welded wire meshes may be used, if they meet the requirements in **b** above and in A **3.1.6.1**. A

Α

# 3.1.7. Local ductility requirements A

A

**3.1.7.1** – For the required overall ductility of the structure to be achieved, the potential regions A for plastic hinge formation, to be defined later for each type of building element, shall possess A high plastic rotational capacities. A

Α

- **3.1.7.2** In order to satisfy the requirement given in **3.1.7.1**, the following conditions shall be A met: A
- a) The curvature ductility factor  $\mu_{\phi}$  of all critical regions of elements, including column ends A depending on the potential for plastic hinge formation in columns) shall be at least equal to A the following values: A

 $\mathbf{A} \qquad \mu_{\phi_0} \quad 1 + 2 \underbrace{\begin{pmatrix} \omega q & \mathbf{A} \\ \omega I f \end{pmatrix}}_{\mathbf{G}_{1A}} 1 \underbrace{\begin{pmatrix} \partial_{\mathbf{S}} \\ \partial_{\mathbf{T}} \\ \partial_{\mathbf{T}_{1A}} \end{pmatrix}}_{\mathbf{G}_{1A}} \qquad (0 \mathbf{A} T f \leq T_{\mathbf{S}} \\ \mathbf{A} \qquad \mathbf{A} \qquad \mathbf{3.3)} \mathbf{A}$   $\mu_{\phi} \quad 2 \underbrace{A}_{If}^{\mathbf{q}} - 1 \qquad (T_{\mathbf{S}A} \leq T_{\mathbf{T}}) \mathbf{A}$ 

b A local Anuckling And A compressed Ateel Anithin potential Aplastic Aninge Aregions And Aprimary A seismic elements shall be prevented. Relevant application rules are given in 3.2.3, 3.3.3 and A 3.4.3. A

A

- 3.1.7.3 − A ppropriate concrete and steel qualities are Adopted to ensure local ductility As A follows: A
- a) Steel Aused An Arritical Ageions As f Ageismic Aglements Ashould Anave Anigh Anniform Aplastic A elongation (see 3.1.6.1); A
- **b** Tensile strength to yield strength ratio of the steel used in critical regions of primary A seismic elements should be significantly higher than unity. Reinforcing steel conforming to A the requirements of **3.1.6.1** may be deemed to satisfy this requirement; A
- c) Concrete used in primary seismic elements should possess adequate compressive strength A and a fracture strain which exceeds the strain at the maximum compressive strength by an A adequate Anargin. Concrete Atonforming to the Atequirements At A.1.6.2 Anay be deemed to A satisfy these requirements. A

Α

**3.1.7.4** – In critical regions of elements with longitudinal reinforcement of steel class B in EN A 1992-1-1:2004, Table C.1, the curvature ductility factor  $\mu_{\phi}$  should be at least equal to 1.5 A times the value given by **Eq.(3.3)**. A

# 3.2. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE BEAMS A

### 3.2.1. Geometrical requirements A

A

3.2.1.1 – The distance between the centroidal axes of a beam and the column into which it A frames shall be limited to less than  $b_c/4$ . A

A

**3.2.1.2** – Width  $b_{\rm w}$  of a beam shall satisfy the following expression: A

$$b_{wA} \leq \min\{b_f + h_w^f, 2b_{cA}\}$$
 A 3.4) A

## **3.2.1.3** – The effective flange width $b_{\text{eff}}$ may be taken as follows: A

a) In beams framing into exterior columns, the effective flange width  $b_{\text{eff}}$  is taken, in the A absence of a transverse beam, as being equal to the width  $b_c$  of the column, or if there is a A transverse beam of similar depth, equal to this width increased by  $2h_f$  on each side of the A beam. A

**b** In beams framing into interior columns the above widths may be increased by  $2h_f$  on each A side of the beam. A

A

- **3.2.1.4** For a beam supporting columns discontinued below the beam, the following rules A apply: A
- a) There shall be no eccentricity of the column axis relative to that of the beam. A
- **b** The beam shall be supported by at least two direct supports, such as walls or columns. A

Α

## 3.2.2. Design shear forces of beams A

A

3.2.2.1 – In beams the design shear forces shall be determined in accordance with the capacity A design rule, on the basis of the equilibrium of the beam under: a the transverse load acting on A it in the seismic design situation and b) end moments  $M_{i,d}$  (with i=1,2 denoting the end A sections of the beam, Arorresponding to plastic hinge formation for positive and negative A directions of seismic loading: A

A 
$$V_{\text{EdA}} = V_{\text{Ed,GA}} \pm A \frac{M f_{\text{,dA}} + \alpha M_{2,\text{dA}}}{l_{\text{clA}}} A$$
 3.5) A

The plastic hinges should be taken to form at the ends of the beams or if they form there first A in the vertical elements connected to the joints into which the beam ends frame. A

Α

**3.2.2.2** – End moments  $M_{i,d}$  may be determined as follows: A

$$M_{i,d\overline{A}} M_{Rb,iA} \min \left( 1, \underbrace{\sum_{i} M_{RcA}}_{RbA} \right) A$$
3.6) A

The value of  $A \Sigma M_{RcA}$  shall be compatible with the column axial force s) in the seismic A design situation for the considered sense of the seismic action. A

3.2.2.3 – At a beam end where the beam is supported indirectly by another beam, instead of A framing into a vertical member, the beam end moment  $M_{i,d}$  there may be taken as being equal A to the acting moment at the beam end section in the seismic design situation. A

A

**3.2.2.4** A Find Amoments  $AM_{i,d}$  Asceed Associated Association Associatio

A

Ā

### 3.2.3. Seismic detailing of beams A

A

**3.2.3.1** – The regions of a beam up to a distance  $l_{\rm cr} = h_{\rm w}$  where  $h_{\rm w}$  denotes the depth of the A beam) from an end cross-section where the beam frames into a beam-column joint, as well as A from both sides of any other cross-section liable to yield in the seismic design situation, shall A be considered as being critical regions. A

Α

**3.2.3.2** – In beams supporting discontinued cut-off) vertical elements, the regions up to a A distance of  $2h_W$  on each side of the supported vertical element should be considered as being A critical regions. A

Α

- **3.2.3.3** The following conditions shall be met at both flanges of the beam along the critical A regions: A
- a) At the compression zone, reinforcement of not less than half of the reinforcement provided A at the tension zone shall be placed, in addition to any compression reinforcement needed for A the verification of the beam in the seismic design situation. A
- **b** The reinforcement ratio of the tension zone,  $\rho$ , shall not exceed a value  $\rho_{max}$  equal to: A

$$\mathbf{A} \qquad \qquad \rho_{\text{max}} = \rho' + \underbrace{A^{0.0018} A_{\text{cdA}}}_{\mu_{\varphi o} \mathcal{E}_{\text{sy,dA}}, \text{ydA}} \mathbf{A} \qquad \qquad \mathbf{3.7)} \mathbf{A}$$

with Ahe Areinforcement Aratios Ar Ahe Arension Arone And Arompression Arone, Ar And Ar , Aboth A normalised to bd, where b is the width of the compression flange of the beam. If the tension A zone Ancludes Ar Arlab, Ahe Armount Ar Arlab Areinforcement Aparallel Aro Ahe Aream Arvithin Ahe A effective flange width defined in 3.2.1.3 is included in  $\rho$ . A

Α

**3.2.3.4** – Along the entire length of a beam, the reinforcement ratio of the tension zone,  $\rho$ , A shall be not less than the following minimum value  $\rho_{min}$ : A

$$\mathbf{A} \qquad \qquad \rho_{\min \overline{A}} = 0.5 \mathbf{A}^{\underline{\text{ctmA}}}_{\text{ykA}} \qquad \qquad \mathbf{3.8)} \; \mathbf{A}$$

- **3.2.3.5** Within the critical regions of beams, hoops satisfying the following conditions shall A be provided: A
- a) The diameter  $d_{\rm bw}$  of hoops shall be not less than 6 mm. A
- **b** The spacing, s, of hoops (in millimetres) shall not exceed: A

**A** 
$$s \text{ Admin} \{hf_{wA} 24df_{wA} 225, 8df_{LA}\}$$
 **A 3.9) A**

c) The first hoop shall be placed not more than 50 mm from the beam end section. A

A

# 3.3. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE A COLUMNS A

A

# 3.3.1. Geometrical requirements A

A

**3.3.1.1** – Shorter dimension of columns with rectangular section shall not be less than 300 A mm and section area shall not be less than 90000 mm<sup>2</sup>. Diameter of circular columns shall be A at least 300 mm. Minimum column dimensions may be reduced to 250 mm and minimum A area of rectangular section may be reduced to 62500 mm<sup>2</sup> in buildings with no more than A three stories above ground. A

Α

**3.3.1.2** – Normalised axial force of column,  $\nu_d$  , shall satisfy the condition of  $\nu_d \le 0.65$ . A

A

### 3.3.2. Design shear forces of columns A

A

**3.3.2.1** – In columns the design values of shear forces shall be determined in accordance with A the capacity design rule, on the basis of the equilibrium of the column under end moments A  $M_{i,d}$  (with i = 1,2 denoting the end sections of the column), corresponding to plastic hinge A formation for positive and negative directions of seismic loading. A

A 
$$V_{\rm EdA} = \frac{M f_{\rm I,dA} + c M_{2,dA}}{l_{\rm clA}} A$$
 3.10) A

The plastic hinges should be taken to form at the ends of the beams connected to the joints A into which the column end frames, or if they form there first) at the ends of the columns. A

Α

**3.3.2.2** – End moments  $M_{i,d}$  may be determined as follows: A

$$\mathbf{A} \qquad \qquad M_{\mathrm{i,dA}} \quad 1.1 \, M_{\mathrm{Rc,iA}} \mathrm{min} \left( 1, \underbrace{\sum_{i} M_{\mathrm{RbA}}}_{\mathrm{RcA}} \right) \, \mathbf{A}$$
 3.11)  $\mathbf{A}$ 

A

**3.3.2.3** A AEnd Amoments  $AM_{i,d}$  Aneed Anot Asxceed Ashose Abstained Afrom Aseismic Annalysis Awith q/I=1. A

## 3.3.3. Seismic detailing of columns A

A

3.3.3.1 – The total longitudinal reinforcement ratio  $\rho_l$  shall be not less than 1% and not more A than A4%. An Asymmetrical Across-sections Asymmetrical Acinforcement Ashould Abe Aprovided  $\rho = \rho'$ . A

A

Α

**3.3.3.2** – At least one intermediate bar shall be provided between corner bars along each A column side, to ensure the integrity of the beam-column joints. A

A

3.3.3.3 A AThe Alegions Aup Ato As Assistance Acr Afrom Aboth And Alections As f As Asolumn Ashall Abe A considered as being critical regions. A

Α

**3.3.3.4** – In the absence of more precise information, the length of the critical region  $l_{cr}$  (in A metres) may be computed from the following expression: A

**A** 
$$lf_{rA} = max \{ hf, lf_{lA} 6, 0.45 \}$$
 **A** 3.12) **A**

**3.3.3.5** – If  $l_c / h_c < 3$ , the entire height of the column shall be considered as being a critical A region and shall be reinforced accordingly. A

Α

**3.3.3.6** – Confinement reinforcement for the critical regions shall not be less than given by A **Eq.(3.13)**. A

A 
$$\alpha \omega_{\text{wd}} = 30 \mu_{\phi} \chi_{\text{d}} \epsilon_{\Theta, \text{dA}} \frac{bf}{bf_{\text{A}}} - 60.035 \text{ A}$$
 3.13) A

where  $\alpha$  is the confinement effectiveness factor, equal to  $\alpha = \alpha_n \alpha_s$  with components  $\alpha_n$  and A  $\alpha_s$  defined as follows: A

a) For rectangular cross-sections: A

A 
$$\alpha \varphi = 1 - \sum_{nA} \begin{pmatrix} \omega & b_{iA}^{2A} \\ \omega & b_{o} & hf_{o} \end{pmatrix}$$
 ;  $\alpha \varphi = \begin{pmatrix} \omega & sf \\ 1 - \omega & 2bf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{o} \end{pmatrix} \begin{pmatrix} \omega & sf \\ 0 & 2hf_{$ 

where n is the total number of longitudinal bars laterally engaged by hoops or cross ties; and A  $b_i$  is the distance between consecutive engaged bars. A

**b** For circular cross-sections with circular hoops: A

A 
$$\alpha \wp = 1$$
 ;  $\alpha \wp = \begin{pmatrix} \omega & sf \\ 1 - \omega & 2D_{oA} \end{pmatrix}_{\omega}^{2\ell} A$  3.15) A

c) For circular cross-sections with spiral hoops: A

A 
$$\alpha \varphi = 1$$
 ;  $\alpha \varphi = \begin{pmatrix} \varphi & sf \\ 1 - sf \\ 2D_{0A} \end{pmatrix}$  (A 3.16) A

3.3.3.7 – A minimum value of  $A_{wd}$  0.08 shall be provided within the critical region at the A base of columns. A

A

**3.3.3.8** – Within the critical regions of the primary seismic columns, hoops and cross-ties, of A at least 6 mm in diameter, shall be provided with the following conditions: A

a) A The Aspacing, As, As f Ashe Assoops Asin Amillimetres) Ashall Assot Assoceed Ashe Asalue Agiven Asy A Eq. (3.17). A

**A** 
$$s \not \leq \min\{b_o/2, 175, 8d_{bL}\}$$
 **A 3.17) A**

**b** The distance between consecutive longitudinal bars engaged by hoops or cross-ties shall A not exceed 200 mm, taking into account EN 1992-1-1:2004, 9.5.3(6). A

# 3.3.4. Seismic detailing of beam-column joints A

A

3.3.4.1 – The horizontal confinement reinforcement in joints of beams with columns should A be not less than that specified in 3.3.3.6 - 3.3.3.8 for the critical regions of columns, with the A exception of the case listed in the following paragraph. A

3.3.4.2 – If beams frame into all four sides of the joint and their width is at least threequarters A of Ahe Aparallel Across-sectional Adimension Apf Ahe Acolumn, Ahe Apacing Apf Ahe Aporizontal A confinement reinforcement in the joint may be increased to twice that specified in 3.3.4.1, but A may not exceed 150 mm. A

Α

**3.3.4.3** A At Aleast Aone Antermediate Albetween Asolumn Asorner Abars) Avertical Abar Ashall Abe A provided at each side of a joint of primary seismic beams and columns. A

A A

# 3.4. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE A STRUCTURAL WALLS A

A

3.4.1. Geometrical requirements A

A

3.4.1.1 – Structural walls are the vertical elements of the structural system where the ratio of A length to thickness in plan is equal to at least 4. A

A

**3.4.1.2** – Web thickness of structural walls,  $b_{\rm wo}$ , in metres) should satisfy the following A expression: A

**A**  $bf_{\text{woA}} = \max \{0.435, hf/20\}$  A 3.18) **A** 

Additional Aequirements Apply Avith Aespect Ao Ahe Ahickness Aof Ahe Aconfined Aoundary A elements of walls, as specified in 3.4.3.3. A

A

**3.4.1.3** – Normalised axial force of column,  $v_d$ , shall satisfy the condition of  $v_d < 0.40$ . A

**3.4.1.4** A Composite Awall Asections Asonsisting Aof Asonnected Aor Antersecting Asectangular A segments L-, T-, U-, I- or similar sections) should be taken as integral units, consisting of a A web or webs parallel or approximately parallel to the direction of the acting seismic shear A force and a flange or flanges normal or approximately normal to it. For the calculation of A flexural resistance, the effective flange width on each side of a web should be taken to extend A from the face of the web by the minimum of a) the actual flange width; b) one-half of the A distance to an adjacent web of the wall; and c 25% of the total height of the wall above the A level considered. A

A

**3.4.1.5** – Discontinued structural walls shall not rely for their support on beams or slabs. A

# 3.4.2. Design bending moments and shear forces of structural walls A

A

**3.4.2.1** – In walls with  $H_{\rm w}/\ell_{\rm w} \le 2.0$ , design bending moments and shears determined using A appropriate q factor given in **3.1.3** shall be amplified by a factor of  $[3/H_{\rm w}/\ell_{\rm w})]$ . However A this factor shall exceed 2. A

Δ

**3.4.2.2** – In walls satisfying the condition  $H_{\rm w}/\ell_{\rm w} > 2.0$ , design bending moments along the A critical wall height determined according to **3.4.3.1** shall be taken as a constant value being A equal to the bending moment calculated at the wall base. A bove the critical wall height, a A linear bending moment diagram shall be applicable which is parallel to the line connecting the A moments calculated at the base and at the top of the wall. A

A

**3.4.2.3** – In walls satisfying the condition  $H_{\rm w}$  /  $\ell_{\rm w}$  > 2.0, design shear forces at any cross A section shall be calculated with Eq.(3.19). A

A 
$$V_{\text{EdA}} \text{Asol} f_{\text{d}} A$$
 3.19) A

where shear amplification factor  $\varepsilon$  is defined as A

**A** 
$$\varepsilon\omega\sqrt{2+\left(\frac{\omega M_{\rm Rd,WA}}{\omega M_{\rm Ed,WA}}\right)^2\omega}\leq\omega\frac{q}{I} A$$
 **3.20) A**

A

### 3.4.3. Seismic detailing of structural walls A

A

**3.4.3.1** – Height of the critical region  $h_{\rm cr}$  above the base of the wall is given by Eq.(3.21): A

$$\mathbf{A} \qquad \qquad h f_{\text{rA}} = \max \left\{ l f_{\text{w}}, h f_{\text{wA}} 6 \right\} \quad \mathbf{A} \qquad \qquad \mathbf{3.21} \mathbf{)} \mathbf{A}$$

However, the *critical wall height*  $h_{cr}$  shall satisfy the following limitations: A

$$\begin{array}{ccc} h_{f_{r}} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{ccccccc} h_{cr} \leq & f_{WA} \\ \end{array} \qquad \begin{array}{cccccc} h_{cr} \leq & f_{WA$$

**3.4.3.2** – Boundary elements shall be appropriately defined at the extremities of the wall cross A section. The length of each boundary element along the *critical wall height* shall not be less A than 20% of the total plan length of the wall, nor shall it be less than two times the wall A thickness. The plan length of each boundary element along the wall section above the *critical f wall height* shall not be less than 10% of the total plan length of the wall, nor shall it be less A than the wall thickness. A

A

3.4.3.3 – The thickness  $b_{\rm w}$  of the confined parts of the wall section (boundary elements) shall A not be less than 200 mm. Moreover, if the length of the confined part does not exceed the A maximum of 2  $b_{\rm w}$  and 0.2  $l_{\rm w}$ ,  $b_{\rm w}$  shall not be less than  $h_{\rm s}/15$ . If the length of the confined part A exceeds the maximum of 2  $b_{\rm w}$  and 0.2  $l_{\rm w}$ ,  $b_{\rm w}$  shall not be less than  $h_{\rm s}/10$ . A

Α

**3.4.3.4** A AMechanical Avolumetric Aratio Asf Ahe Arequired Aronfining Areinforcement A wd Ain A boundary elements is given by Eq.(3.23): A

A 
$$\alpha\omega_{\text{wd}} = 30 \mu \omega_{\text{o}} v_{\text{dA}} + \omega_{\text{vA}} \epsilon \omega_{\text{dA}} \frac{bf}{bf_{\text{A}}} - \omega.035 \text{ A}$$
 3.23) A

where  $A_v$  is the mechanical ratio of vertical web reinforcement ( $A_v = \rho_{v \; Ayd,v} \; / \; A_{ed}$  . A

A

**3.4.3.5** – The longitudinal reinforcement ratio in the boundary elements shall be not less than A 0.5%. A

Α

A

A

A

A

A

A

A

A

A

A A

A

A

A

### 3.5. REQUIREMENTS FOR ANCHORAGE AND SPLICING OF REBARS A

A

# 3.5.1. General A

Α

**3.5.1.1** – EN 1992-1-1:2004, Section 8 for the detailing of reinforcement applies, with the A additional rules of the following sub-clauses. A

A

**3.5.1.2** – For hoops used as transverse reinforcement in beams, columns or walls, closed A stirrups with  $135^{\circ}$  hooks and extensions of length  $10d_{\text{bw}}$  shall be used. A

A

3.5.1.3 – The anchorage length of beam or column bars anchored within beam-column joints A shall be measured from a point on the bar at a distance  $5d_{bL}$  inside the face of the joint, to take A into account the yield penetration due to cyclic post-elastic deformations. A

Α

### 3.5.2. Anchorage of rebars A

A

**3.5.2.1** – When calculating the anchorage or lap length of column bars which contribute to the A flexural strength of elements in critical regions, the ratio of the required area of reinforcement A over the actual area of reinforcement shall be assumed to be unity. A

A

3.5.2.2 – If, under the seismic design situation, the axial force in a column is tensile, the A anchorage lengths shall be increased to 50% longer than those specified in EN 1992-1-1:2004. A

3.5.2.3 – The Apart Asf Apeam Alongitudinal Aleinforcement Apent An Ajoints Afor Anchorage Ashall A always be placed inside the corresponding column hoops. A

Α

**3.5.2.4** – To prevent bond failure the diameter of beam longitudinal bars passing through A beam-column joints,  $d_{bL}$ , shall be limited in accordance with the following expressions: A

a) For interior beam-column joints: A

A 
$$d_{\text{bLA}} = \frac{7.5 A_{\text{ctmA}}}{\text{ydA}} \frac{(1+0.8 \text{v}_{\odot})}{1+0.5 \text{Ap}/\rho_{\text{maxA}}} A$$
 3.24) A

**b** For exterior beam-column joints: A

**A** 
$$d_{\text{bLA}} = \frac{7.5 \,\text{A}_{\text{ctmA}}}{\text{vdA}} (1 + 0.8 \,\text{v}_{\text{d}}) \,\text{A}$$
 3.25) **A**

**Eq.(3.24)** and **Eq.(3.25)** are not applicable to diagonal bars crossing joints. A

3.5.2.5 – If the requirement specified in 3.5.2.4 cannot be satisfied in exterior beam-column A joints because the depth,  $h_c$ , of the column parallel to the bars is too shallow, the following A additional measures may be taken to ensure anchorage of the longitudinal reinforcement of A beams. A

- a) The beam or slab may be extended horizontally in the form of exterior stubs. A
- **b** Headed bars or anchorage plates welded to the end of the bars may be used. A
- c) Bends with a minimum length of  $10d_{bL}$  and transverse reinforcement placed tightly inside A the bend of the bars may be added. A

**3.5.2.6** – Top or bottom bars passing through interior joints, shall terminate in the members A framing into the joint at a distance not less than  $l_{\rm cr}$  length of the member critical region from A the face of the joint (see **3.2.3.1** . A

A

# 3.5.3. Splicing of rebars A

Α

**3.5.3.1** – There shall be no lap-splicing by welding within the critical regions of structural A elements. A

Α

**3.5.3.2** – There may be splicing by mechanical couplers in columns and walls, if these devices A are covered by appropriate testing under conditions compatible with the selected ductility A class. A

Α

A A

- **3.5.3.3** The transverse reinforcement to be provided within the lap length shall be calculated A in accordance with EN 1992-1-1:2004. In addition, the following requirements shall also be A met: A
- a) If the anchored and the continuing bar are arranged in a plane parallel to the transverse A reinforcement, the sum of the areas of all spliced bars shall be used in the calculation of the A transverse reinforcement. A
- **b** If the anchored and the continuing bar are arranged within a plane normal to the transverse A reinforcement, the area of transverse reinforcement shall be calculated on the basis of the area A of the larger lapped longitudinal bar A
- c) The spacing, s, of the transverse reinforcement in the lap zone in millimetres shall not A exceed A

**A** 
$$sf = \min\{h/4, 100\}$$
 **A 3.26) A**

3.5.3.4 – The Arequired Arrea Aof Arransverse Areinforcement  $M_{\rm st}$  Awithin Ahe Aap Arone Aof Ahe A longitudinal reinforcement of columns spliced at the same location as defined in EN 1992-1-A 1:2004), Aor Aof Ahe Alongitudinal Areinforcement Aof Aboundary Aelements An Awalls, Amay Abe A calculated from the following expression: A

# 3.6. DESIGN AND DETAILING OF SECONDARY SEISMIC ELEMENTS A

A

**3.6.1** – Secondary seismic elements, which are defined in **1.6.2** shall be designed and detailed A to maintain their capacity to support the gravity loads present in the seismic design situation, A when subjected to the maximum deformations under the seismic design situation. A

Α

3.6.2 – Maximum deformations due to the seismic design situation, as mentioned in 3.6.1, A shall be calculated in accordance with 2.7. They shall be calculated from an analysis of the A structure An Ahe Aeismic Alesign Aituation, An Awhich Ahe Acontribution Aof Aecondary Aeismic A elements to lateral stiffness is neglected and primary seismic elements are modeled with their A cracked flexural and shear stiffness. A

Α

**3.6.3** – Bending moments and shear forces of secondary seismic elements shall be calculated A with maximum deformations defined in **3.6.2**, using their cracked flexural stiffnesses and, if A necessary, shear stiffnesses. They shall not exceed their design flexural and shear resistances A determined on the basis of EN 1992-1-1:2004. A

Α

A

A

A A

A

A

A A

A

A

A A

A

A

A

A A

A

A

A

A

A

A A

A

A

A A

A

A A

A

### 3.7. SEISMIC DESIGN REQUIREMENTS FOR FOUNDATIONS A

A

## 3.7.1. General A

A

3.7.1.1 – The following paragraphs apply for the design of concrete foundation elements, such A as footings, tie-beams, foundation beams, foundation slabs, foundation walls, pile caps and A piles, As Avell As Afor Asonnections Abetween Auch Aslements, As Abetween Ahem And Avertical A concrete elements. The design of these elements shall follow the rules of EN 1998-5:2004, A 5.4. A

A

3.7.1.2 – Design Avalues As f Ashe Action As ffects As Fed Ash Ashoundations Ashall Ase Asterived As A follows: A

$$A E_{\text{EdA}} = E_{\text{EGA}} + \Omega E_{\text{EE}} A 3.28) A$$

**3.7.1.3** – In box-type basements of dissipative structures, comprising: a a concrete slab acting A as a rigid diaphragm at basement roof level; b a foundation slab or a grillage of tie-beams or A foundation Aveams Act Aboundation Avel, And Ac) Aperipheral And/or Anterior Aboundation Avalls, A columns and beams (including those at the basement roof) are expected to remain elastic A under Ahe Aseismic Alesign Asituation. Ashear Avalls Ashould Ave Adesigned Afor Aplastic Aninge A development at the level of the basement roof slab. To this end, in walls which continue with A the same cross-section above the basement roof, the critical region should be taken to extend A below the basement roof level up to a depth of  $h_{\rm cr}$  see **3.4.3.1**). Moreover, the full free height A of such walls within the basement should be dimensioned in shear assuming that the wall A develops its flexural overstrength 1.1  $M_{\rm Rd}$  at the basement roof level and zero moment at the A foundation level. A

Α

### 3.7.2. Tie-beams and foundation beams A

A

**3.7.2.1** – Stub columns between the top of a footing or pile cap and the soffit of tie-beams or A foundation slabs shall be avoided. To this end, the soffit of tie-beams or foundation slabs shall A be below the top of the footing or the pile cap. A

Δ

3.7.2.2 – Axial forces in Aie-beams Aor Aie-zones Aof foundation Alabs in Accordance with A 5.4.1.2(6) and 7) of EN 1998-5, should be taken in the verification to act together with the A action effects derived for the seismic design situation. A

Α

**3.7.2.3** – Tie-beams and foundation beams should have a cross-sectional width of at least A  $b_{\rm w,min} = 250$  mm and a cross-sectional depth of at least  $h_{\rm w,min} = 400$  mm. A

**3.7.2.4** – Foundation slabs arranged in accordance with EN 1998-5:2004, 5.4.1.2(2) for the A horizontal connection of individual footings or pile caps, should have a thickness of at least A  $t_{\text{min}} = 200 \text{ mm}$  and a reinforcement ratio of at least  $\rho_{\text{s,min}} = 0.2\%$  at the top and bottom. A

3.7.2.5 – Tie-beams and foundation beams should have along their full length a longitudinal A reinforcement ratio of at least  $\rho_{b,min} = 0.4\%$  at both the top and the bottom. A

A

# 3.7.3. Connections of vertical elements with foundation beams or walls A

A

**3.7.3.1** – The common joint) region of a foundation beam or foundation wall and a vertical A element shall follow the rules of **3.3.4.1** as a beam-column joint region. A

**3.7.3.2** – The connection of foundation beams or foundation walls with vertical elements shall A follow the rules of **3.3.4**. A

Α

**3.7.3.3** – Bends or hooks at the bottom of longitudinal bars of vertical elements should be A oriented so that they induce compression into the connection area. A

Α

# 3.7.4. Cast-in-place concrete piles and pile caps A

A

**3.7.4.1** – The top of the pile up to a distance to the underside of the pile cap of twice the pile A cross-sectional dimension, d, as well as the regions up to a distance of 2d on each side of an A interface between two soil layers with markedly different shear stiffness (ratio of shear moduli A greater than 6, shall be detailed as potential plastic hinge regions. To this end, they shall be A provided Avith Aransverse And Aconfinement Aconforcement Acollowing Ahe Acules Acor Acolumn A critical regions given in **3.3.3**. A

Α

3.7.4.2 – Piles required to resist tensile forces or assumed as rotationally fixed at the top A should be provided with anchorage in the pile cap to enable the development of the pile A design uplift resistance in the soil, or of the design tensile strength of the pile reinforcement, A whichever is lower. If the part of such piles embedded in the pile cap is cast before the pile A cap, dowels should be provided at the interface where the connection occurs. A

A

A

A

A A

A

A A

A

A

A A

A

A A

A

A A

A

A

A

A A

A A

A

A A

# CHAPTER 4 A SEISMIC DESIGN REQUIREMENTS A FOR STRUCTURAL STEEL BUILDINGS A

A

### 4.1. SCOPE AND DESIGN CONCEPTS A

A

# 4.1.1. Scope A

Α

**4.1.1.1** – This Chapter applies to the seismic design of elements of structural steel buildings. A

**4.1.1.2** – The rules given in this Chapter are additional to those given in EN 1993-1-1:2004. A

# 4.1.2. Design Concepts A

A

**4.1.2.1** – Design of earthquake resistant steel buildings shall provide the structure with an A adequate energy dissipation capacity without substantial reduction of its overall resistance A against horizontal and vertical loading. Adequate resistance of all structural elements shall be A provided, and non-linear deformation demands in critical regions should be compatible with A the overall ductility assumed in calculations. A

Α

**4.1.2.2** – Steel buildings may alternatively be designed for low dissipation capacity and low A ductility, by applying only the rules of EN 1993-1-1:2005 for the seismic design situation, and A neglecting Ahe Aspecific Aprovisions Agiven An Ashis Ashapter. A The Aslass A of Asuch Asuildings As A identified as *Low Ductility Class* (DCL. A

Α

4.1.2.3 A Asteel Avuildings Asther Ahan Ahose Ao Awhich A.1.2.2 Applies, Ahall Ave Alesigned Ao A provide Aenergy Adissipation Acapacity And Aan Averall Aductile Abehaviour. Averall Aductile A behaviour is ensured if the ductility demand involves globally a large volume of the structure A spread to different elements and locations of all its storeys. To this end ductile modes of A failure Ahould Aprecede Avrittle Afailure Amodes Awith Aufficient Afeliability. A The Aslass Av Auch A buildings As Adentified As Avormal Ductility Class ADCN, Afor Awhich Asteel Assimic Alesign A requirements are given in the remainder of Chapter 4. A

Α

## 4.1.3. Structural types and Behaviour Factors A

A

- **4.1.3.1** Steel buildings are classified with respect to structural types and their combinations A as follows: **A**
- **a)** *Moment-resisting frame system* is defined as a structural system composed of moment-A resisting frames only. A
- **b** Concentric braced rame system is defined as a structural system composed of concentric A braced frames only. f
- c) Eccentric braced frame system is defined as a structural system composed of eccentric A braced frames only. A
- d Frame-dominant dual system is defined As A Atructural Asystem Asomposed Asf Amoment-A resisting Aframes, Awhich Aresist Amore Athan A50% Asf Athe Atotal Acalculated Abase Ashear, An A combination with eccentric or concentric braced frames. A

- e) Braced rame-dominant dual system concentric bracing is defined as a structural system A composed of concentrically braced frames, which resist more than 50% of the total calculated A base shear, in combination with moment-resisting frames and/or eccentric braced frames. A
- **f** Braced frame-dominant dual system eccentric bracing is defined as a structural system A composed of eccentrically braced frames, which resist more than 50% of the total calculated A base shear, in combination with moment-resisting frames and/or concentric braced frames. A
- g) Wall-dominant dual system coupled walls) is defined as a structural system composed of A coupled structural walls, which resist more than 50% of the total calculated base shear, in A combination Awith Amoment-resisting Arames Aand/or Auncoupled Awalls Aand/or Accentric Aor A concentric braced frames. A
- h Wall-dominant dual system uncoupled walls is defined as a structural system composed A of uncoupled isolated) structural walls, which resist more than 50% of the total calculated A base Ashear, An Acombination Avith Anoment-resisting Aframes And/or Acoupled Avalls And/or A eccentric or concentric braced frames. A
- i Inverted pendulum structures, which are defined in 3.1.3.1 are structures where dissipative A zones are located at the bases of columns. A
- **4.1.3.2** Steel buildings may be classified to one type of structural system in one horizontal A direction and to another in the other. A
- **4.1.3.3** Behaviour factors for all structural types of *Low Ductility Class* (DCL shall be A taken as q = 1. A
- **4.1.3.4** Behaviour factors for structural types of *Normal Ductility Class* DCN) shall be A taken from **Table 4.1**. A

Table 4.1 – Behaviour Factors q for steel structural types A

| Structural type A                                         | qf         |
|-----------------------------------------------------------|------------|
| Moment resisting frame system A                           | 5.0 A      |
| Eccentric braced frame system A                           | 5.0 A      |
| Concentric braced frame system A                          | 3.5 A      |
| Frame-dominant dual system A                              | 4.0 A      |
| Braced frame-dominant dual system A (eccentric bracing A  | 4.0 A<br>A |
| Braced frame-dominant dual system A (concentric bracing A | 3.5 A<br>A |
| Wall-dominant dual system (coupled walls) A               | 3.0 A      |
| Wall-dominant dual system (uncoupled walls)               | A 2.0 A    |
| Inverted pendulum system A                                | 1.5 A      |

Α

### 4.1.4. Material Requirements A

A

**4.1.4.1** – Structural steel shall conform to standards referred to in EN 1993. A

4.1.4.2 – The toughness of the steels and the welds should satisfy the requirements for the A seismic Action At Ahe Aguasi-permanent Avalue Asf Ahe Aervice Aemperature Asee AEN A993-1-A 10:2004). A

A

**4.1.4.3** – In bolted connections of primary seismic members of a building, high strength bolts A of bolt grade 8.8 or 10.9 should be used. A

A

4.1.4.4 – In the capacity design checks specified in 4.2 to 4.5, the possibility that the actual A yield strength of steel is higher than the nominal yield strength should be taken into account A by a material overstrength factor  $\gamma_{ov} = 1.25$ . A

A A

A A

A

A

A

A

A A

A

A Α

A A

Α

A A

A

Α A

A

A

Α A

A

Α

A A

A

A A

Α

A A

A

A A

A A

52 Α

### 4.2. GENERAL DESIGN CRITERIA AND DETAILING RULES A

A

# 4.2.1. Design rules for ductile elements in compression or bending A

Α

**4.2.1.1** – Sufficient local ductility  $\Delta f$  Amembers which dissipate Amergy  $\Delta f$  Amembers which dissipate Amergy  $\Delta f$  Amembers which dissipate  $\Delta f$  according to the cross-A sectional classes specified in EN 1993-1-1:2004, 5.5. A

Α

**4.2.1.2** – Depending on the ductility class and the behaviour factor q used in the design, the A requirements Ategarding Ahe Atross-sectional Atlasses At Ahe Atteel Atlasments Awhich Adissipate A energy are indicated in **Table 4.2**. A

A

Table 4.2. Required cross-sectional class A

| Behaviour Factor A q A    | Cross-sectional A class A |
|---------------------------|---------------------------|
| $1.5 < q \le 2 \text{ A}$ | Class 1,2 or 3 A          |
| 2 < q ≤ 4 A               | Class 1 or 2 A            |

A

## 4.2.2. Design rules for ductile elements in tension A

A

For tension members or parts of members in tension, the ductility requirement of EN 1993-1-A 1:2004, 6.2.3(3) should be met. A

Α

### 4.2.3. Design rules for connections A

A

4.2.3.1 – For fillet weld or bolted connections, Eq.(4.1) should be satisfied: A

A 
$$R_{dA} \otimes \omega l. 1 \gamma \omega_{A} R_{f_{V}} A$$
 4.1) A

**4.2.3.2** – Categories *B* and *C* of bolted joints in shear in accordance with EN 1993-1-8:2004, A 3.4.1 and category *E* of bolted joints in tension in accordance with EN 1993-1-8:2004, should A be used. Shear joints with fitted bolts are also allowed. Friction surfaces should belong to A class A or B as defined in ENV 1090-1. A

Α

**4.2.3.3** – For bolted shear connections, the design shear resistance of the bolts should be A higher than 1.2 times the design bearing resistance. A

A

A

A

A

A

A A

A

A

A

A

A

Α

### 4.3. DESIGN AND DETAILING RULES FOR MOMENT RESISTING FRAMES A

Α

# 4.3.1. Design criteria A

A

**4.3.1.1** – Moment resisting frames shall be designed so that plastic hinges form in the beams A or in the connections of the beams to the columns, but not in the columns, in accordance with A **4.3.1.2**. A

A

**4.3.1.2** — In Amoment Assisting Asrame Asystems, Ancluding Asrame-dominant Asual Asystems As A defined in **4.1.3.1**, the following condition should be satisfied at all beam-column joints: A

A 
$$\sum M_{\text{RcA}} \triangleq \text{col.} 3 \sum M_{\text{RbA}} A$$
 4.2) A

**4.3.1.3** – Slab reinforcement parallel to the beam and within the effective flange width shall A be Asonsidered Aso Asontribute Aso Ashe Aseam Alexural Asapacities Asken Anto Ascount Asor Ashe A calculation of  $\sum M_{RbA}$  in Eq.(4.2), if it is anchored beyond the beam section at the face of the A joint. A

A

**4.3.1.4** – **Eq.(4.2)** shall be satisfied separately for both earthquake directions and senses with A the column moments always opposing the beam moments to yield the most unfavourable A result. In calculating the column moment resistances, axial forces shall be taken to yield the A minimum moments consistent with the sense of earthquake direction. A

Α

**4.3.1.5** – If the structural system is a frame or equivalent to a frame in only one of the two A main horizontal directions As f the Astructural Asystem, then Æq.(4.2) should be Astisfied just A within the vertical plane through that direction. A

A

- **4.3.1.6** Special situations regarding the application of Eq.(4.2) are given in the following: A
- (a) Eq.(4.2) need not to be satisfied at the base of any frame. A
- **b)** Eq.(4.2) need not to be checked in single storey buildings and in joints of topmost storey A of multi-storey buildings. A

A

**4.3.1.7** – Eq.(4.2) may be permitted not to be satisfied in a given earthquake direction at a A certain number of joints at the bottom and/or top of a storey, provided that Eq.(4.3) holds. A

$$\mathbf{A} \qquad \qquad \alpha_{i} = \underbrace{X_{isA}}_{V_{isA}} \ge \mathbf{0}.75 \text{ A}$$
 4.3)  $\mathbf{A}$ 

**4.3.1.8** – In the case where **Eq.(4.3)** is satisfied, bending moments and shears of columns A satisfying **Eq.(4.2)** at both bottom and top joints shall be amplified by multiplying with the A ratio  $(1/\alpha_i)$  within the range of  $0.75 \le \alpha_i < 1.00$ . A

A

## 4.3.2. Beams A

A

**4.3.2.1** – Beams should be verified as having sufficient resistance against lateral and lateral A torsional buckling in accordance with EN 1993, assuming the formation of a plastic hinge at A one end of the beam. The beam end that should be considered is the most stressed end in the A seismic design situation. A

A

4.3.2.2 – For plastic hinges in the beams it should be verified that the full plastic moment of A resistance and rotation capacity are not decreased by compression and shear forces. To this A end, Afor Acctions Abelonging Ato Across-sectional Adlasses A And A., Albe Afollowing Amequalities A should be verified at the location where the formation of hinges is expected: A

$$\frac{M_{\rm EdA}}{M_{\rm pl,RdA}} \leq 1.0 {\rm A}$$
 
$$\frac{N_{\rm EdA}}{N_{\rm pl,RdA}} \leq 0.15 {\rm A}$$
 
$$\frac{V_{\rm EdA}}{V_{\rm pl,RdA}} \leq 0.5 {\rm A}$$
 
$$4.4) {\rm A}$$

where A

$$\mathbf{A} \qquad V_{\text{Ed}} = V_{\text{Ed},GA} + oV_{\text{Ed},MA} \qquad ; \qquad V_{\text{Ed},M} = \frac{Mf_{\text{pl},Rd,A} + oM}{Lf} \mathbf{A} \qquad \qquad \mathbf{4.5)} \mathbf{A}$$

For sections belonging to cross-sectional class 3,  $N_{\rm pl,Rd}$ ,  $M_{\rm pl,Rd}$ ,  $V_{\rm pl,Rd}$  must be replaced with A  $N_{\rm el,Rd}$ ,  $M_{\rm el,Rd}$ ,  $V_{\rm el,Rd}$  in Eq.(4.4) and Eq.(4.5). A

A

**4.3.2.3** – The condition in the second expression of **Eq.(4.4)** may not be verified, provided A that the provisions of EN 1993-1-1:2004,6.2.9.1 are satisfied. A

A

### 4.3.3. Columns A

A

**4.3.3.1** – The columns shall be verified in compression considering the most unfavourable A combination of the axial force and bending moments.  $N_{\rm ed}$ ,  $M_{\rm ed}$ ,  $V_{\rm ed}$  shall be calculated as: A

$$N_{\text{EdA}} = N_{\text{Ed,GA}} + 1.1 \gamma_{\text{ovA}} \Omega N_{\text{Ed,EA}}$$

$$M_{\text{EdA}} = M_{\text{Ed,GA}} + 1.1 \gamma_{\text{ovA}} \Omega M_{\text{Ed,EA}} A$$

$$V_{\text{EdA}} = V_{\text{Ed,GA}} + 1.1 \gamma_{\text{ovA}} \Omega \omega V_{\text{Ed,EA}}$$
4.6) A

where is the minimum value of  $_{i} = M_{pl,Rd,i} / M_{Ed,i}$  of all beams,  $M_{Ed,i}$  is the design value of A the bending moment in beam i in the seismic design situation and  $M_{pl,Rd,i}$  is the corresponding A plastic moment. A

Α

**4.3.3.2** – The resistance verification of the columns should be made in accordance with EN A 1993-1-1:2004, Section 6. A

Α

**4.3.3.3** – The column shear force  $V_{\rm Ed}$  resulting from the structural analysis should satisfy the A following expression : A

$$\frac{V_{\rm EdA}}{V_{\rm pl,RdA}} \le 0.5 \text{ A}$$
 4.7) A

**4.3.3.4** – The transfer of the forces from the beams to the columns should conform to the A design rules given in EN 1993-1-1:2004, Section 6. A

Α

**4.3.3.5** – The shear Aesistance of framed web panels of beam/column Aonnections should A satisfy the following expression: A

Α

$$\mathbf{A} \qquad \frac{V_{\text{wp,EdA}}}{V_{\text{wp,RdA}}} \le 1.0 \text{ A}$$

where  $V_{\rm wp,Ed}$  is the design shear force in the web panel due to the action effects, taking into A account Ahe Aplastic Assistance Apf Ahe Andjacent Apeams Apr Aconnections;  $AV_{\rm wp,Rd}$  As Ahe Ahear A resistance of the web panel in accordance with EN 1993- 1-8:2004, 6.2.4.1. It is not required A to take into account the effect of the stresses of the axial force and bending moment on the A plastic resistance in shear. A

Α

**4.3.3.6** – The shear buckling resistance of the web panels should also be checked to ensure A that it conforms to EN 1993-1-5:2004, Section 5: A

$$\frac{V_{\text{wp,EdA}}}{V_{\text{wb,RdA}}} \le 1.0 \text{ A}$$

where  $V_{\rm wb,Rd}$  is the shear buckling resistance of the web panel. A

A

### 4.3.4. Beam - column connections A

A

**4.3.4.1** – If the structure is designed to dissipate energy in the beams, the connections of the A beams to the columns should be designed for the required degree of overstrength taking into A account Ahe Amoment And American American

Α

- 4.3.4.2 Energy Alissipating Aemi-rigid And/or Apartial Atrength Aconnections Are Apermitted, A provided that all of the following requirements are verified: A
- a) Connections have a rotation capacity consistent with the global deformations A
- **b** Members framing into the connections are demonstrated to be stable at the ultimate limit A state (ULS); A
- c) Effect of connection deformation on global drift is taken into account using nonlinear A static (pushover) global analysis or non-linear response history analysis. A

A

**4.3.4.3** – The connection design should be such that the chord rotation capacity of the plastic A hinge region  $\theta_p$  is not less than 25 mrad for structures with q > 2. A

Α

**4.3.4.4** – In experiments made to assess  $\theta_p$  the column web panel shear resistance should A conform to Eq.(4.7) and the column web panel shear deformation should not contribute for A more than 30% of the plastic rotation capability  $\theta_p$ . A

Α

- **4.3.4.5** The column elastic deformation should not be included in the evaluation of  $\theta_p$ . A
- **4.3.4.6** When partial strength connections are used, the column capacity design should be A derived from the plastic capacity of the connections. A

A

A

A

A

A

# 4.4. DESIGN AND DETAILING RULES FOR FRAMES WITH CONCENTRIC A BRACINGS A

A

# 4.4.1. Design criteria A

A

**4.4.1.1** – Concentric braced frames shall be designed so that yielding of the diagonals in A tension will take place before failure of the connections and before yielding or buckling of the A beams or columns. A

A

**4.4.1.2** – Diagonal Adlements And bracings Ashall be placed in Auch As Away that the Astructure A exhibits similar load deflection characteristics at each storey in opposite senses of the same A braced direction under load reversals. In this regard, the following rule should be met at every A storey: A

A 
$$\frac{\left|A^{+} - \omega A^{-\frac{1}{2}}\right|}{A f^{-0} + \omega A f} \leq 0.05 \text{ A}$$
 4.10) A

where  $A^+$  and  $A^-$  are the areas of the horizontal projections of the cross-sections of the tension A diagonals, Awhen Ahe Ahorizontal Aseismic Aactions Ahave Aa Apositive Aor Anegative Adirection A respectively. A

A

### 4.4.2 Analysis A

Α

**4.4.2.1** – Under gravity load conditions, only beams and columns shall be considered to resist A such loads, without taking into account the bracing members. A

Α

- 4.4.2.2 Diagonals Ashall Ave Anaken Anto Account Ass Afollows An An Ashastic Analysis Avf Ashe A structure for the seismic action: A
- a) In frames with diagonal bracings, only the tension diagonals shall be taken into account. A
- **b** In frames with V bracings, both the tension and compression diagonals shall be taken into A account. A

Α

- **4.4.2.3** Taking into account of both tension and compression diagonals in the analysis of A any type of concentric bracing is allowed provided that all of the following conditions are A satisfied: A
- a) Non-linear static (pushover) global analysis or non-linear time history analysis is used, A
- **b** both pre-buckling and post-buckling situations are taken into account in the modelling of A the behaviour of diagonals and, A
- c) background information justifying the model used to represent the behaviour of diagonals A is provided. A

A

### 4.4.3 Diagonal members A

Α

**4.4.3.1** – In frames with X diagonal bracings, the non-dimensional slenderness  $\overline{\bf A}$  as defined A in EN 1993-1-1:2004 should be limited to:  $1.3 < \overline{\lambda} \le 2.0$ . A

Α

**4.4.3.2** – In frames with diagonal bracings in which the diagonals are not positioned as X A diagonal bracings, the non-dimensional slenderness  $\overline{\lambda}$  should be less than or equal to 2.0. A

**4.4.3.3** – In frames with V bracings, the non-dimensional slenderness  $\bar{\lambda}$  should be less than or A equal to 2.0. A

Α

**4.4.3.4** – In structures of up to two storeys, no limitation applies to  $\overline{\lambda}$  . A

A

**4.4.3.5** – Yield resistance  $N_{\rm pl,Rd}$  of the gross cross-section of the diagonals should be such that A  $N_{\rm pl,Rd} \ge N_{\rm Ed}$ . A

Α

**4.4.3.6** – In frames with V bracings, the compression diagonals should be designed for the A compression resistance in accordance with EN 1993. A

Α

**4.4.3.7** – The connections of the diagonals to any member should satisfy the design rules of A **4.2.3**. A

Α

**4.4.3.8** – In order to satisfy a homogeneous dissipative behaviour of the diagonals, it should A be checked that the maximum overstrength i defined in **4.4.4.1** does not differ from the A minimum value by more than 25%. A

Α

- **4.4.3.9** Energy Alissipating Aemi-rigid And/or Apartial Atrength Aconnections Are Apermitted, A provided that all of the following conditions are satisfied: A
- a) Connections have an elongation capacity consistent with global deformations; A
- **b** Effect of connections deformation on global drift is taken into account using nonlinear A static (pushover) global analysis or non-linear time history analysis. A

A

### 4.4.4 Beams and columns A

Α

**4.4.4.1** – Beams and columns with axial forces should meet the following minimum resistance A requirement: A

$$\mathbf{A} \qquad \qquad N_{\mathrm{pl},\mathrm{RdA}} M_{\mathrm{EdA}} \mathbf{A} \geq \omega N_{\mathrm{Ed},\mathrm{GA}} + 1.1 \, \gamma_{\mathrm{Ql}} \Omega \, N_{\mathrm{Ed},\mathrm{Ed}} \, \mathbf{A} \qquad \qquad \mathbf{4.11}) \, \mathbf{A}$$

where  $N_{\rm pl,Rd}$   $M_{\rm Ed}$  is the design buckling resistance of the beam or the column in accordance A with EN 1993, taking into account the interaction of the buckling resistance with the bending A moment  $M_{\rm Ed}$ , defined as its design value in the seismic design situation;  $N_{\rm Ed,G}$  is the axial A force in the beam or in the column due to the non-seismic actions included in the combination A of actions for the seismic design situation;  $N_{\rm Ed,E}$  Ais the axial force in the beam or in the A column due to the design seismic action;  $\gamma_{\rm ov}$  Ais the overstrength factor, is the minimum A value of  $_{\rm i} = N_{\rm pl,Rd,i}$  over all the diagonals of the braced frame system; where  $N_{\rm pl,Rd,i}$  is A the design resistance of diagonal i;  $N_{\rm Ed,i}$  Ais the design value of the axial force in the same A diagonal i in the seismic design situation. A

Α

- **4.4.4.2** In frames with V bracings, the beams should be designed to resist: A
- a) All Anon-seismic Auctions Avithout Aronsidering Ahe Antermediate Asupport Agiven Ary Ahe A diagonals; A
- **b** unbalanced vertical seismic action effect applied to the beam by the braces after buckling A of the compression diagonal. This action effect is calculated using  $N_{\rm pl,Rd}$  for the brace in A tension and  $\gamma_{\rm pb}$   $N_{\rm pl,Rd}$  for the brace in compression. The factor  $\gamma_{\rm pb}$  is used for the estimation of A the post buckling resistance of diagonals in compression, which may be taken as 0.3). A

Α

**4.4.4.3** – In frames with diagonal bracings where tension and compression diagonals are not A intersecting, the design should take into account the tensile and compression forces which A develop An Athe Acolumns Andjacent Ato Athe Adiagonals An Acompression And Acorrespond Ato A compression forces in these diagonals equal to their design buckling resistance. A

A

A

# 4.5. DESIGN AND DETAILING RULES FOR FRAMES WITH ECCENTRIC A BRACINGS A

A

### 4.5.1. Design criteria A

A

**4.5.1.1** – Frames with eccentric bracings shall be designed so that specific elements or parts of A elements called seismic links are able to dissipate energy by the formation of plastic bending A and/or plastic shear mechanisms. A

Α

4.5.1.2 – Seismic links may be horizontal or vertical components. A

A

#### 4.5.2. Seismic links A

Α

**4.5.2.1** – The web of a link should be of single thickness without doubler plate reinforcement A and without a hole or penetration. A

Α

- 4.5.2.2 Seismic Ainks Aire Aslassified Ainto As Asategories According Ato Ashe Asype Asf Aplastic A mechanism developed: A
- a) Short links, which dissipate energy by yielding essentially in shear; A
- **b** Long links, which dissipate energy by yielding essentially in bending; A
- c) Intermediate links, in which the plastic mechanism involves bending and shear. A A
- **4.5.2.3** For I sections, the following parameters are used to define the design resistances and A limits of categories: A

$$Mf_{h \text{ link}} = A b t f_{\Delta} d - t f_{\Delta} A$$
 4.12) A

A 
$$V_{x,\text{linkA}} = (A_y / \sqrt{3}) t_{x,\text{VA}} d - t_{x,\text{VA}} A$$
 4.13) A

**4.5.2.4** – If  $N_{\rm Ed}$  /  $N_{\rm pl,Rd} \le 0.15$ , the design resistance of the link should satisfy both of the A following relationships at both ends of the link: A

$$\begin{array}{c}
V_{\text{EdA}} \leq c_{\text{p,linkA}} \\
M_{\text{EdA}} \leq c_{\text{M}_{\text{p,link}}} & \text{A}
\end{array}$$
4.14) A

where  $N_{\rm Ed}$ ,  $M_{\rm Ed}$  are the design axial force, design bending moment and design shear, A respectively, at both ends of the link. A

Α

**4.5.2.5** – If  $N_{\rm Ed}$  /  $N_{\rm pl,Rd}$  > 0.15, **Eqs.(4.14)** should be satisfied with the following reduced A values  $V_{\rm p,link,r}$  and  $M_{\rm p,link,r}$  used instead of  $V_{\rm p,link}$  and  $M_{\rm p,link}$ : A

A 
$$V_{p,link,rA} = AV_{p,linkA}\sqrt{1 - Nf_{EdA}/N_{pl,RdA}^{2}} A$$

$$Mf_{p,link,rA} Mf_{p,linkA}1 - dN_{EdA}/Nf_{pl,RdA}$$
4.15) A

**4.5.2.6** – If  $N_{\rm Ed}$  /  $N_{\rm pl,Rd} \le 0.15$ , link length e should not exceed: A

Α

$$ef \leq 1 \text{ A } \frac{M_{\text{p,linkA}}}{V_{\text{p,linkA}}} \qquad (if R < \emptyset.3)$$

$$A \qquad \qquad A \qquad \qquad A \qquad \qquad A \qquad \qquad A.16) A$$

$$ef \leq 1 \text{ A } \frac{M_{\text{p,linkA}}}{V_{\text{p,linkA}}} 1.15 - 0.5R) \qquad (if R \geq \emptyset.3)$$

where A

$$Rf = \frac{Nf_{\text{Ed}} x f_{\text{WA}} d - 2t f}{V_{\text{EdA}} A} + A$$
4.17) A

A

in which A is the gross area of the link. A

Α

**4.5.2.7** – To achieve a global dissipative behaviour of the structure, it should be checked that A the individual values of the ratios idefined in **4.5.2.1** do not exceed the minimum value  $\Omega$  A resulting from **4.5.2.1** by more than 25% of this minimum value. A

Α

**4.5.2.8** – When equal moments develop simultaneously at both ends of the link, links may be A classified according to the length *e*. For I sections, the categories are: A

Short links: 
$$ef \le \omega f_A = 1 \text{ As } \frac{M_{p,linkA}}{V_{p,linkA}}$$

A Long links:  $ef > \omega_L = 3 \cdot \Omega \frac{M_{p,linkA}}{V_{p,linkA}}$  A 4.18) A Intermediate links:  $ef_A < \omega f < \omega_{LA}$ 

**4.5.2.9** – When only one plastic hinge develops at one end of the link, the value of the length A *e* defines the categories of the links. For I sections the categories are: A

Short links: 
$$ef \le \omega_s = 0.8(1+\alpha) \frac{M_{p,linkA}}{V_{p,linkA}}$$

A Long links:  $ef > \omega_L = 1.5(1+\alpha) \frac{M_{p,linkA}}{V_{p,linkA}}$ 

Intermediate links:  $ef_A < \omega f < \omega_{LA}$ 

where  $\alpha$  is the ratio of the smaller bending moments  $M_{\rm Ed,A}$  at one end of the link in the A seismic design situation, to the greater bending moments  $M_{\rm Ed,B}$  at the end where the plastic A hinge develops, both moments being taken as absolute values. A

Α

**4.5.2.10** – The link rotation angle  $\theta_p$  between the link and the element outside of the link as A defined in **4.3.4.3** should be consistent with global deformations. It should not exceed the A following values: A

Short links: 
$$\theta_{p,k} = 0.08 \text{ radianA}$$

A Long links:  $\theta_{p,k} = 0.02 \text{ radianA}$  A 4.20) A Intermediate links:  $\theta_{p,k} = \theta_{p,k} = 0.02 \text{ radianA}$  by interpolation.

**4.5.2.11** – Full-depth web stiffeners should be provided on both sides of the link web at the A diagonal brace ends of the link. These stiffeners should have a combined width of not less A than  $(b_f - 2t_w)$  and a thickness not less than 0.75  $t_w$  nor 10 mm, whichever is larger. A

Α

- 4.5.2.12 Links should be provided with intermediate web stiffeners as follows: A
- a) Short links should be provided with intermediate web stiffeners spaced at intervals not A exceeding  $30t_w d/5$ ) for a link rotation angle  $\theta_P$  of 0.08 radians or  $52t_w d/5$ ) for link A rotation angles  $\theta_P$  of 0.02 radians or less. Linear interpolation should be used for values of  $\theta_P$  A between 0.08 and 0.02 radians; A
- **b** Long links should be provided with one intermediate web stiffener placed at a distance of A 1.5 times b from each end of the link where a plastic hinge would form; A
- **d** Intermediate web stiffeners are not required in links of length e greater than  $5 M_p/V_p$ ; A
- e) intermediate web stiffeners should be full depth. For links that are less than 600 mm in A depth d, stiffeners are required on only one side of the link web. The thickness of one-sided A stiffeners should be not less than  $t_w$  or 10 mm, whichever is larger, and the width should be A not less than b/2)  $t_w$ . For links that are 600 mm in depth or greater, similar intermediate A stiffeners should be provided on both sides of the web. A

Α

**4.5.2.13** – Fillet Avelds Aronnecting A Aink Atiffener Ao Ahe Aink Aveb Ahould have A Alesign A strength adequate to resist a force of  $\gamma_{ov}$  A,  $A_{st}$ , where  $A_{st}$  is the area of the stiffener. The A design strength of fillet welds fastening the stiffener to the flanges should be adequate to resist A a force of  $\gamma_{ov}$  A,  $A_{st}$ /4. A

Δ

**4.5.2.14** – Lateral supports should be provided at both the top and bottom link flanges at the A ends of the link. End lateral supports of links should have a design axial resistance sufficient A to provide lateral support for forces of 6% of the expected nominal axial strength of the link A flange computed as Ab  $t_f$ . A

Δ

**4.5.2.15** – In beams where a seismic link is present, the shear buckling resistance of the web A panels outside of the link should be checked to conform to EN 1993-1-5:2004, Section 5. A

A

### 4.5.3. Members not containing seismic links A

Α

The Amembers Auot Asontaining Aseismic Ainks, Aike Ahe Asolumns Aund Adiagonal Amembers, Af A horizontal links in beams are used, and also the beam members, if vertical links are used, A should be verified in compression considering the most unfavourable combination of the axial A force and bending moments: A

A 
$$N_{\text{Rd}} M_{\text{Ed}}, N_{\text{EdA}} \approx \omega N_{\text{Ed,GA}} + 1.1 \gamma \omega_{\text{A}} \Omega N_{\text{Ed,E}} A$$
 4.21) A

where  $N_{\rm Rd}$   $M_{\rm Ed\,A}$   $N_{\rm Ed}$ ) is the axial design resistance of the column or diagonal member in A accordance with EN 1993, taking into account the interaction with the bending moment  $M_{\rm Ed\,A}$  and the shear  $V_{\rm Ed}$  taken at their design value in the seismic situation;  $N_{\rm Ed,G}$  is the compression A force An Ahe Asolumn As Aliagonal Amember Alue Aso Ahe Asonseismic Acctions Ancluded An Ahe A combination of actions for the seismic design situation;  $N_{\rm Ed,E}$  is the compression force in the A column or diagonal member due to the design seismic action;  $\gamma_{\rm OV}$  is the overstrength factor  $\Omega$  A

is a multiplicative factor which is the minimum of the following values: the minimum value A of  $_{i}=1.5~V_{p,link,i}/V_{Ed,i}$  among all short links; the minimum value of  $_{i}=1.5(M_{p,link,i}/M_{Ed,i})$  A among all intermediate and long links; where  $V_{Ed,i}$ ,  $M_{Ed,i}$  are the design values of the shear A force and of the bending moment in link i in the seismic design situation;  $V_{p,link,i}$ ,  $M_{p,link,i}$  are A the shear and bending plastic design resistances of link i as in **4.5.2.3**. A

A

# 4.5.4. Connections of seismic links A

Α

**4.5.4.1** – If the structure is designed to dissipate energy in the seismic links, the connections A of the links or of the element containing the links should be designed for action effects  $E_{\rm d}$  A computed as follows: A

**A** 
$$Ef_{d,GA} = \Omega Ef_{d,GA} + 1.1 \gamma_{ovA} \Omega Nf_{d,EA}$$
 **4.22) A**

where  $E_{d,G}$  is the action effect in the connection due to the non-seismic actions included in the A combination As f Actions Afor Ashe Aseismic Aslesign Asituation;  $AE_{d,E}$  As Ashe Asction As factor, A in Asis Ashe A overstrength factor computed in accordance with 4.5.3 for the link. A

Α

- **4.5.4.2** In the case of semi-rigid and/or partial strength connections, the energy dissipation A may be assumed to originate from the connections only. This is allowable, provided that all of A the following conditions are satisfied: A
- a) Ahe Asonnections Anave Asotation Asapacity Asufficient Asor Ahe Asorresponding Asleformation A demands; A
- b members framing into the connections are demonstrated to be stable at the ULS; A
- c) the effect of connection deformations on global drift is taken into account. A
- **4.5.4.3** When partial strength connections are used for the seismic links, the capacity design A of the other elements in the structure should be derived from the plastic capacity of the links A connections. A

A A

A

A A

A A

A

A

A A

A

A

A A

A A

A

# 4.6. DESIGN RULES FOR STEEL BUILDINGS WITH CONCRETE CORES OR A CONCRETE WALLS A

 $\mathbf{A}$ 

**4.6.1** – The steel elements shall be verified in accordance with this Chapter and EN 1993, A while the concrete elements shall be designed in accordance with **Chapter 3**. A

Α

4.6.2 A AThe Atlements An Awhich An Anteraction Abetween Ateel And Atoncrete Axists Ahall Abe A verified in accordance with Chapter 5. A

A A

# 4.7. DESIGN RULES FOR INVERTED PENDULUM STRUCTURES A

A

**4.7.1** – In inverted pendulum structures defined in **4.1.3.1**), the columns should be verified in A compression considering the most unfavourable combination of the axial force and bending A moments. A

A

**4.7.2** – In the checks,  $N_{\rm Ed}$ ,  $M_{\rm Ed}$ ,  $V_{\rm Ed}$  should be computed as in **4.3.3**. A

Α

**4.7.3** – The non-dimensional slenderness of the columns should be limited to  $\overline{\lambda} \leq 1,5.$  A

# CHAPTER 5 A SEISMIC DESIGN REQUIREMENTS FOR A STEEL – CONCRETE COMPOSITE BUILDINGS A

Α

### 5.1. SCOPE AND DESIGN CONCEPTS A

A

### **5.1.1. Scope A**

A

**5.1.1.1** – This Chapter applies to the seismic design of elements of composite steel-concrete A buildings. A

A

**5.1.1.2** – The rules given in this Chapter are additional to those given in EN 1994-1-1:2004. A

**5.1.1.3** – Except where modified by the provisions of this Chapter, the provisions of Chapters A **3** and **4** apply. A

A

# 5.1.2. Design Concepts A

A

- **5.1.2.1** Earthquake resistant composite buildings shall be designed in accordance with one A of the following design concepts (see **Table 5.1**): A
- a) Concept A: Low-dissipative structural behaviour. A
- **b** Concept B: Dissipative structural behaviour with composite dissipative zones; A
- c) Concept C: Dissipative structural behaviour with steel dissipative zones. A

A

Table 5.1. Design concepts of composite buildings A

| Design concept A                         | Structural A ductility class |         |
|------------------------------------------|------------------------------|---------|
| : Low dissipative structural behaviour A | DCL A                        | 1.0 A   |
| B or C: Dissipative structural behaviour | A DCN A                      | ≤ 5.0 A |

Α

**5.1.2.2** – In concept A, the action effects may be calculated on the basis of an elastic analysis A without taking into account non-linear material behaviour but considering the reduction in the A moment of inertia due to the cracking of concrete in part of the beam spans, in accordance A with the general structural analysis rules defined in **5.2** and to the specific rules defined in **5.5** A to **5.9** related to each structural type. Behaviour factor shall be taken as q = 1. A

Α

**5.1.2.3** A An Atoncept A Ahe Atesistance As f Ahe Amembers And As f Ahe Atonnections Ahould As A evaluated in accordance with EN 1993 and EN 1994 without any additional requirements. A

Α

**5.1.2.4** – In concepts B and C, the capability of parts of the structure (dissipative zones) to A resist earthquake actions through inelastic behaviour is taken into account. Behavior factor A shall be taken from **Table 5.2**. When adopting concepts B or C the requirements given in **5.2** A to **5.9** should be fulfilled. A

Α

5.1.2.5 – In concept C, structures are not meant to take advantage of composite behaviour in A dissipative Azones; Ashe Application Asf Azoncept AC As Azonditioned Asy As Atrict Azompliance Aso A measures that prevent involvement of the concrete in the resistance of dissipative zones. In A

concept C the composite structure is designed in accordance with EN 1994-1-1:2004 under A non-seismic Aoads Aand An Accordance Awith A Chapter 4 to Acesist Acarthquake Action. A The A measures preventing involvement of the concrete are given in 5.5.5. A

5.1.2.6 A AThe Alesign Asules Afor Adissipative Asomposite Astructures Asconcept AB, Asim Ast Ashe A development of reliable local plastic mechanisms dissipative zones) in the structure and of a A reliable global plastic mechanism dissipating as much energy as possible under the design A earthquake Action. Afor Asach Atructural Aslement Asr Asach Atructural Asype Asonsidered An Ahis A Chapter, rules allowing this general design objective to be achieved are given in 5.5 to 5.9 A with reference to what are called the specific criteria. These criteria aim at the development of A a global mechanical behaviour for which design provisions can be given. A

Α

5.1.2.7 – Structures designed in accordance with concept B shall belong to structural ductility A class Adentified As ANormal fDuctility fClass ADCN). AThis Aductility Aslass Asorresponds As A increased Arbility Arof Ahe Astructure Aro Adissipate Amergy An Aplastic Amechanisms, Afor Archich A composite seismic design requirements are given in the remainder of Chapter 5. A

A

# 5.1.3. Structural types and Behaviour Factors A

- 5.1.3.1 A Composite Ateel-concrete Atructures Athall Ase Assigned As Assigned As Assigned As Assigned structural types according to the behaviour of their primary resisting structure under seismic A actions: A
- a) Composite moment resisting frames are those with the same definition and limitations as A in 4.1.3.1(a), but in which beams and columns may be either structural steel or composite A steel-concrete. A
- **b** Composite concentrically braced rames are those with the same definition and limitations A as An A.1.3.1(b), Columns And Abeams Anay Abe Asither Attructural Asteel Abr Asomposite Asteel-A concrete. Braces shall be structural steel. A
- c) AComposite feccentrically fbraced f rames Aare Athose Awith Athe Asame Adefinition Aand A configurations as in 4.1.3.1(c). The members which do not contain the links may be either A structural Asteel Aor Acomposite Asteel-concrete. AOther Ahan Afor Ahe Aslab, Ahe Ainks Ashall Aoe A structural steel. Energy dissipation shall occur only through yielding in bending or shear of A these links. A
- d Inverted pendulum structures, have the same definition and limitations as in 4.1.3.1(i). A
- e) Composite structural systems are those which behave essentially as reinforced concrete A walls. The composite systems may belong to one of the following types: A
- Type 1 corresponds to a steel or composite frame working together with concrete infill A panels connected to the steel structure; A
- Type 2 is A Ageinforced Agoncrete Awall in Awhich Agnased Ageel Agections Agonnected to the A concrete structure are used as vertical edge reinforcement; A
- Type 3, steel or composite beams are used to couple two or more reinforced concrete or A composite walls. A
- f Composite steel plate shear walls are those consisting of a vertical steel plate continuous A over the height of the building with reinforced concrete encasement on one or both faces of A the plate and of the structural steel or composite boundary members. A

**5.1.3.2** – In all types of composite structural systems the energy dissipation takes place in the A vertical steel sections and in the vertical reinforcements of the walls. In type 3 composite A structural systems, energy dissipation may also take place in the coupling beams. A

A

**5.1.3.3** – If, in composite structural systems the wall elements are not connected to the steel A structure, **Chapters 3** and **4** apply. A

A

5.1.3.4 – The behaviour factor q shall be taken from **Table 4.1** or **Table 5.2** as indicated in A the latter, provided that the rules in 5.3 to 5.9 are met. A

Table 5.2. Behaviour Factors q for composite structural types A

| Structural type A                               | qf    |
|-------------------------------------------------|-------|
| Composite moment resisting frame system A       | 5.0 A |
| Composite eccentrically braced frame system A   | 5.0 A |
| Composite concentrically braced frame system A  | 3.5 A |
| Frame-dominant dual system A                    | 4.0 A |
| Braced frame-dominant dual system (eccentric A  | 4.0 A |
| bracing A                                       | A     |
| Braced frame-dominant dual system (concentric A | 3.5 A |
| bracing A                                       | A     |
| Inverted pendulum system A                      | 1.5 A |
| Composite walls (Type 1 and Type 2) A           | 3.5 A |
| Composite or concrete walls coupled by steel A  | A     |
| or composite beams (Type 3) A                   | 3.5 A |
| Composite steel plate structural walls A        | 3.5 A |

A

#### 5.1.4. Material requirements A

A

**5.1.4.1** – In dissipative zones, the prescribed concrete class should not be lower than C20/25. A If the concrete class is higher than C40/50, the design is not within the scope of EN 1998-1. A

A

**5.1.4.2** – For Aductility Aslass ADCN Ashe Aseinforcing Asteel Asken Anto Account An Ashe Aslastic A resistance of dissipative zones shall be of class B or C in accordance with EN 1992-1-1:2004 A Table C.1. A

Α

**5.1.4.3** – Reinforcing steel of class B or C (EN 1992-1-1:2004, Table C.1) shall be used in A highly stressed regions of non dissipative structures. This requirement applies to both bars and A welded meshes. A

Α

**5.1.4.4** – Except for closed stirrups or cross ties, only ribbed bars are allowed as reinforcing A steel in regions with high stresses. A

Α

**5.1.4.5** – Welded meshes not conforming to the requirements of **5.1.4.2** shall not be used in A dissipative zones. If such meshes are used, ductile reinforcement duplicating the mesh should A be placed and their resistance capacity accounted for in the capacity analysis. A

A

A **5.1.4.6** – For structural steel, requirements given in **4.1.4** apply. A

#### 5.2. STRUCTURAL ANALYSIS A

A

## **5.2.1. Scope A**

A

The Afollowing Afules Apply Ato Ashe Analysis As f Ashe Astructure Ander Asarthquake Action Awith A Equivalent Seismic Load Method given in 2.3 and with the Multi-Mode Response Spectrum f Analysis Method given in 2.4. A

A

#### 5.2.2. Stiffness of sections A

A

**5.2.2.1** – The stiffness of composite sections in which the concrete is in compression shall be A computed using a modular ratio n given in Eq.(5.1). A

$$n \text{ A} \omega \frac{E_{\text{dA}}}{E_{f_{\text{mA}}}} = \vec{\omega} \text{ A}$$
 5.1) A

**5.2.2.2** – For composite beams with slab in compression, the second moment of area of the A section, referred to as  $I_1$ , shall be computed taking into account the effective width of slab A defined in **5.4.3**. A

Α

**5.2.2.3** – The stiffness of composite sections in which the concrete is in tension shall be A computed assuming that the concrete is cracked and that only the steel parts of the section are A active. A

A

**5.2.2.4** – For composite beams with slab in tension, the second moment of area of the section, A referred to as  $I_2$ , shall be computed taking into account the effective width of slab defined in A **5.4.3** A

Α

**5.2.2.5** – The structure should be analysed taking into account the presence of concrete in A compression in some zones and concrete in tension in other zones; the distribution of the A zones is given in **5.5** to **5.9** for the various structural types. A

A

A

Α

A

A

A

A

A

A

A A

A

A

A A

Α

Α

A

Α

# 5.3. DESIGN CRITERIA AND DETAILING RULES FOR DISSIPATIVE A STRUCTURAL BEHAVIOUR COMMON TO ALL STRUCTURAL TYPES A

Α

### 5.3.1. Design criteria for dissipative structures A

A

**5.3.1.1** – Dissipative zones shall have adequate ductility and resistance. The resistance shall A be determined in accordance with EN 1993-1-1:2004 and **Chapter 4** for concept C, and to EN A 1994-1-1:2004 And **AChapter A5** Afor Aconcept AB A(see **A5.1.2.1**). ADuctility As Anchieved Aby A compliance to detailing rules. A

Α

- **5.3.1.2** Dissipative zones may be located in the structural members or in the connections. A
- a) If dissipative zones are located in the structural members, the non-dissipative parts and the A connections Aof Ahe Adissipative Aparts Ato Ahe Arest Aof Ahe Astructure Ashall Ahave Asufficient A overstrength to allow the development of cyclic yielding in the dissipative parts. A
- **b** When dissipative zones are located in the connections, the connected members shall have A sufficient overstrength to allow the development of cyclic yielding in the connections. A

#### 5.3.2. Plastic resistance of dissipative zones A

A

**5.3.2.1** – Two plastic resistances of dissipative zones are used in the design of composite steel A - concrete structures: a lower bound plastic resistance (index: pl,Rd) and an upper bound A plastic resistance index: U,Rd). A

Α

**5.3.2.2** – The lower bound plastic resistance of dissipative zones is the one taken into account A in design checks concerning sections of dissipative elements; e.g.  $M_{\rm Ed} < M_{\rm pl,Rd}$ . The lower A bound plastic resistance of dissipative zones is computed taking into account the concrete A component of the section and only the steel components of the section which are classified as A ductile. A

Α

5.3.2.3 – The Apper Abound Aplastic Assistance Apf Alissipative Azones As Ahe Aone Assed An Ahe A capacity design Apf Aplements Adjacent to the dissipative Azone: for instance in the Appacity A design verification of 4.3.1.2, the design values of the moments of resistance of beams are the A upper bound plastic resistances,  $M_{\rm U,Rd,b}$ , whereas those of the columns are the lower bound A ones,  $M_{\rm pl,Rd,c}$ . A

Α

**5.3.2.4** – The upper bound plastic resistance is computed taking into account the concrete A component of the section and all the steel components present in the section, including those A that are not classified as ductile. A

Α

**5.3.2.5** – Action effects, which are directly related to the resistance of dissipative zones, shall A be determined on the basis of the upper bound resistance of composite dissipative sections; A e.g. the design shear force at the end of a dissipative composite beam shall be determined on A the basis of the upper bound plastic moment of the composite section. A

Α

# 5.3.3. Detailing rules for composite connections in dissipative zones A

Α

**5.3.3.1** – For the design of welds and bolts, **4.2.3** applies. A

**5.3.3.2** – In fully encased framed web panels of beam/column connections, the panel zone A resistance may be computed as the sum of contributions from the concrete and steel shear A panel, if all the following conditions are satisfied: A

A 
$$0.6 < h_b/h_c < 1.4 \text{ A}$$
 5.2) A

$$\mathbf{A} \qquad V_{\text{wp,EdA}} < 0.8 A \mathcal{Y}_{\text{wp,Rd}} A \qquad \qquad \mathbf{5.3)} \mathbf{A}$$

where  $h_b/h_c$  is the aspect ratio of the panel zone; where  $V_{\rm wp,Ed}$  is the design shear force in the A web panel due to the action effects, taking into account the plastic resistance of the adjacent A composite dissipative zones in beams or connections;  $V_{\rm wp,Rd}$  is the shear resistance of the A composite steel - concrete web panel in accordance with EN 1994-1-1:2004. A

A

- **5.3.3.3** In partially encased stiffened web panels, an assessment similar to that in **5.3.3.2** is A permitted if, in addition to the requirements of **5.3.3.4**, one of the following conditions is A fulfilled: A
- a) Straight links of the type defined in 5.4.5.4 and complying with 5.4.5.5 and 5.4.5.6 are A provided at a maximum spacing  $s_1 = c$  in the partially encased stiffened web panel; these links A are Ariented Aperpendicularly Ato Athe Atongest Acide At Atongest Acide Atongest
- **b** No reinforcement is present, provided that  $h_b$  /  $b_b$  < 1,2 and  $h_c$  /  $b_c$  < 1,2. A A
- **5.3.3.4** When a dissipative steel or composite beam is framing into a reinforced concrete A column, vertical column reinforcement with design axial strength at least equal to the shear A strength of the coupling beam should be placed close to the stiffener or face bearing plate A adjacent to the dissipative zone. It is permitted to use vertical reinforcement placed for other A purposes as part of the required vertical reinforcement. The presence of face bearing plates is A required; they should be full depth stiffeners of a combined width not less than  $b_b 2t$ ; their A thickness should be not less than 0,75 t or 8 mm;  $b_b$  and t are respectively the beam flange A width and the panel web thickness. A

Α

5.3.3.5 — When As Alissipative Asteel Aor Asomposite Aseam As Aframing Anto As Afully Asneased A composite Asolumn, Ashe Aseam Asolumn Asonnection Annay be Aslesigned Asither As As Aseam/steel A column Asonnection Aor As Aseam/composite Asolumn Asonnection. An Ashe Aster Asase, Aretical A column reinforcements may be calculated either as in 5.3.3.4 or by distributing the shear A strength of the beam between the column steel section and the column reinforcement. In both A instances, the presence of face bearing plates as described in 5.3.3.4 is required. A

Α

5.3.3.6 – The Aertical Arolumn Areinforcement Aspecified An As.3.3.4 and As.3.3.5 should Are A confined by transverse reinforcement that meets the requirements for members defined in 5.4. A

A A

A

A A

A

A

A A

#### 5.4. RULES FOR MEMBERS A

A

#### 5.4.1. General A

A

**5.4.1.1** – Composite members, which are primary seismic members, shall conform to EN A 1994-1-1:2004 and to additional rules defined in this Section. A

Α

**5.4.1.2** – For tension members or parts of members in tension, the ductility requirement of EN A 1993-1-1:2004, 6.2.3(3) should be met. A

A

**5.4.1.3** – Sufficient local ductility of members Awhich dissipate energy Ander compression A and/or bending should be ensured by restricting the width-to-thickness ratios of their walls. A Steel dissipative zones and the not encased steel parts of composite members should meet the A requirements As A.2.1.1 and ATable 4.2. Dissipative Asones As Ancased Asomposite Amembers A should meet the requirements of **Table 5.3**. The limits given for flange outstands of partially A or fully Ancased Amembers Anay be Aslaxed if Apecial details Are provided As described in A **5.4.5.9** and **5.4.5.4** to **5.4.5.6**. A

A

Table 5.3. Limits of wall slenderness A

| Section type A                                                                                             | Wall A<br>slenderness A  |
|------------------------------------------------------------------------------------------------------------|--------------------------|
| Partially encased H or I section A<br>Fully encased H or I section A<br>Flange outstand limits $c/t_f$ : A | Α<br>Α<br>14 ε Α         |
| Filled rectangular section A h / t limits: A                                                               | Α<br>38 ε Α              |
| Filled circular section A d / t limits: A                                                                  | Α<br>85 ε <sup>2 Α</sup> |

A

where  $\varepsilon = (A/235)^{0.5}$  A

Α

**5.4.1.4** – More specific detailing rules for dissipative composite members are given in **5.4.2**, A **5.4.4**, **5.4.5** and **5.4.6**. A

Α

**5.4.1.5** – In the design of all types of composite columns, the resistance of the steel section A alone or the combined resistances of the steel section and the concrete encasement or infill A may be taken into account. A

Α

5.4.1.6 – The design of columns in which the member resistance is taken to be provided only A by the steel section may be carried out in accordance with the provisions of **Chapter 4**. In the A case As Adissipative Asolumns, Ashe Asapacity Aslesign Asules As Ass.3.1.2 and As.3.2.3 should Ase A satisfied. A

Α

**5.4.1.7** – For fully encased columns with composite behaviour, the minimum crosssectional A dimensions b, h or d should be not less than 250 mm. A

A

**5.4.1.8** – The resistance, including shear resistance, of non-dissipative composite columns A should be determined in accordance with the rules of EN 1994-1-1:2004. A

Δ

**5.4.1.9** – In columns, when the concrete encasement or infill are assumed to contribute to the A axial and/or flexural resistance of the member, the design rules in **5.4.4** to **5.4.6** apply. These A rules ensure full shear transfer between the concrete and the steel parts in a section and protect A the dissipative zones against premature inelastic failure. A

Α

**5.4.1.10** – For earthquake-resistant design, the design shear strength given in EN 1994-1-A 1:2004, Table 6.6, should be multiplied by a reduction factor of 0.5. A

A

**5.4.1.11** – When, for capacity design purposes, the full composite resistance of a column is A employed, complete shear transfer between the steel and reinforced concrete parts should be A ensured. If insufficient shear transfer is achieved through bond and friction, shear connectors A should be provided to ensure full composite action. A

Α

**5.4.1.12** – Wherever a composite column is subjected to predominately axial forces, sufficient A shear transfer should be provided to ensure that the steel and concrete parts share the loads A applied to the column at connections to beams and bracing members. A

A

**5.4.1.13** – Except at their base in some structural types, columns are generally not designed to A be dissipative. However, because of uncertainties in the behaviour, confining reinforcement is A required in regions called *critical regions* as specified in **5.4.4**. A

A

5.4.1.14 - 3.5.2.1 and 3.5.3 concerning anchorage and splices in the design of reinforced A concrete columns apply also to the reinforcements of composite columns. A

Α

#### 5.4.2. Steel beams composite with slab A

A

**5.4.2.1** – The design objective of this subclause is to maintain the integrity of the concrete A slab during the seismic event, while yielding takes place in the bottom part of the steel section A and/or in the rebars of the slab. A

Α

**5.4.2.2** – If it is not intended to take advantage of the composite character of the beam section A for energy dissipation, **5.5.5** shall be applied. A

Α

5.4.2.3 — Beams Antended Ao Abehave As Acomposite Aslements An Alissipative Azones Aof Ahe A earthquake Assistant Astructure Amay Abe Adesigned Afor Afull Aor Apartial Ashear Aconnection Ain A accordance with EN 1994-1-1:2004. The minimum degree of connection η as defined in EN A 1994-1-1:2004 Ao.6.1.2 should Abe Anot Aless Ahan Ao.8 Aand Ahe Aotal Assistance Aof Ahe Ashear A connectors Awithin Any hogging Amoment Assign Anot less than the plastic Assistance Aof the A reinforcement. A

Α

**5.4.2.4** – The design resistance of connectors in dissipative zones is obtained from the design A resistance provided in EN 1994-1-1:2004 multiplied by a reduction factor of 0.75. A

Α

**5.4.2.5** – Full shear connection is required when non-ductile connectors are used. A  $^{\Delta}$ 

**5.4.2.6** – When a profiled steel sheeting with ribs transverse to the supporting beams is used, A the reduction factor  $k_t$  of the design shear resistance of connectors given by EN 1994-1-1 A

should be further reduced by multiplying it by the rib shape efficiency factor  $k_r = 0.8$  for the A case of standard trapezoidal ribs. A

Α

5.4.2.7 – To achieve ductility in plastic hinges, the ratio x/d of the distance x between the top A concrete Asompression Asibre And Ahe Aplastic Aseutral Asxis, Aso Ahe Alepth Ad of Ahe Asomposite A section, should conform to the following expression: A

**A** 
$$\frac{x}{df} < \frac{\lambda}{\varepsilon_{\text{cu2A}}} A \qquad \qquad \mathbf{5.4) A}$$

where  $\varepsilon_{cu2}$  is the ultimate compressive strain of concrete see EN 1992-1-1:2004);  $\varepsilon_a$  is the A total strain in steel at Ultimate Limit State. A

Α

**5.4.2.8** – The rule in **5.4.2.7** is deemed to be satisfied when x/d of a section is less than the A limits given in **Table 5.4**. A

Table 5.4. Limit values x/d for A ductility of beams with slabs A

| f <sub>y</sub> (MPa A | x/d A<br>upper limit A |
|-----------------------|------------------------|
| 355 A                 | 0.27 A                 |
| 235 A                 | 0.36 A                 |
|                       | A                      |

#### 5.4.3. Effective width of slab A

A

**5.4.3.1** – The total Affective Avidth  $A_{eff}$  of Anoncrete flange Associated Avith Arach Ateel Aveb A should be taken as the sum of the partial effective widths  $b_{e1}$  and  $b_{e2}$  of the portion of the A flange on each side of the centreline of the steel web. The partial effective width on each side A should be taken as  $b_{e}$  given in **Table 5.5**, but not greater than the actual available widths  $b_{1}$  A and  $b_{2}$  defined in **5.4.3.2**. A

Α

5.4.3.2 – The actual width b of each portion should be taken as half the distance from the web A to the adjacent web, except that at a free edge the actual width is the distance from the web to A the free edge. A

Α

**5.4.3.3** – The partial effective width  $b_e$  Aof the slab to be used in the determination of the A elastic and plastic properties of the composite T sections made of a steel section connected to A a slab are defined in **Table 5.5**. A

Α

Table 5.5 – I. Partial effective width  $b_e$  of slab for elastic analysis A

| b <sub>e</sub> A    | Transverse element A                    | b <sub>e</sub> for I (elastic) A              |
|---------------------|-----------------------------------------|-----------------------------------------------|
| t interior column A | Present or not present A                | For negative <i>M</i> : 0.05 <i>lf</i>        |
| t exterior column   | Present A                               | For positive $M$ : 0.0375 $l$                 |
| t exterior column   | Not present, A or rebars not anchored A | For negative M: 0 f For positive M: 0.025 l A |

Table 5.5 – II. Partial effective width  $b_e$  of slab for evaluation of plastic moment A resistance A

| Sign of bending A moment M A | Location A          | Transverse element A                                                                                                                                                                              | $b_{ m e}$ for $M_{ m Rd}$ A plastic A                       |
|------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Negative M A                 | Interior A column A | Seismic re-bars A                                                                                                                                                                                 | 0.1 <i>l</i> A                                               |
| Negative M A                 | Exterior A column A | ll layouts with re-bars anchored to façade A beam or to concrete cantilever edge strip A                                                                                                          | 0.1 <i>l</i> A                                               |
| Negative M A                 | Exterior A column A | ll layouts with re-bars not anchored to A façade beam or to concrete cantilever edge A strip A                                                                                                    | 0 A                                                          |
| Positive M A                 | Interior A column A | Seismic re-bars A                                                                                                                                                                                 | 0.075 <i>l</i> A                                             |
| Positive M A                 | Exterior A column A | Steel transverse beam with connectors. A Concrete slab up to exterior face of column A of H section with strong axis or beyond A (concrete edge strip). Seismic re-bars A                         | 0.075 <i>l</i> A                                             |
| Positive M A                 | Exterior A column A | No steel transverse beam or steel transverse A beam without connectors. A Concrete slab up to exterior face of column A of H section with strong axis or beyond A (edge strip). Seismic re-bars A | $b_{\rm b}/2~{ m A}$                                         |
| Positive M A                 | Exterior A column A | ll other layouts. Seismic re-bars A                                                                                                                                                               | $b_{\rm b}/2 \le b_{\rm e,max}$ A $b_{\rm e,max} = 0.05 \ l$ |
|                              |                     | A                                                                                                                                                                                                 |                                                              |

# 5.4.4. Fully encased composite columns A

A

**5.4.4.1** – In dissipative structures, critical regions are present at both ends of all column clear A lengths in moment frames and in the portion of columns adjacent to links in eccentrically A braced frames. The lengths  $l_{cr}$  of these critical regions (in metres are specified by **Eq.(3.12)**, A with  $h_c$  in these expressions denoting the depth of the composite section (in metres). A

A

**5.4.4.2** – To satisfy plastic rotation demands and to compensate for loss of resistance due to A spalling of cover concrete, the following expression should be satisfied within the critical A regions defined above: A

**A** 
$$\alpha \omega_{\text{wd}} = 30 \,\mu_{\phi} \gamma_{\text{d}} \approx \omega_{\text{d}} \frac{bf}{bf_{\text{A}}} - \omega.035 \,\text{A}$$
 **5.5) A**

in which confinement effectiveness factor  $\alpha$  is as defined in **3.3.3.6** and the normalised design A axial force  $v_d$  is defined as: A

A 
$$v_{d} = A \frac{N_{EdA}A}{N_{pl,RdA}} A \frac{N_{EdA}}{Af_{ydA} + \omega f_{cdA} + \omega f_{s}} A$$
 5.6) A

**5.4.4.3** – The spacing, s, (in millimetres) of confining hoops in critical regions should not A exceed A

A 
$$s \times \min \{bf/2, 260, 9df_{bLA}\}$$
 A 5.7) A

where  $b_0$  is the minimum dimension of the concrete core (to the centreline of the hoops, in A millimetres);  $d_{bL}$  is the minimum diameter of the longitudinal rebars (in millimetres). A

Α

**5.4.4.4** – The diameter of the hoops shall be at least  $d_{\text{bw}} = 6$  mm. A

A

**5.4.4.5** – In critical regions, the distance between consecutive longitudinal bars restrained by A hoop bends or cross-ties should not exceed 250 mm. A

Α

**5.4.4.6** – In the lower two storeys of a building, hoops in accordance with **5.4.4.3**, **5.4.4.4** and A **5.4.4.5** shall be provided beyond the critical regions for an additional length equal to half the A length of the critical regions. A

Α

**5.4.4.7** – In dissipative composite columns, the shear resistance should be determined on the A basis of the structural steel section alone. A

Α

5.4.4.8 – The Atelationship Abetween Ashe Aductility Atlass Asf Ashe Attructure And Ashe Allowable A slenderness  $(c/t_f)$  of the flange outstand in dissipative zones is given in **Table 5.3**. A

Α

**5.4.4.9** – Confining hoops can delay local buckling in the dissipative zones. The limits given A in ATable **5.3** Afor Allange Atlenderness Amay Abe Ancreased Af Ahe Anoops Agre Aprovided Ant An A longitudinal spacing, s, which is less than the flange outstand: s/c < 1.0. For s/c < 0.5 the A limits given in **Table 5.3** may be increased by up to 50%. For values of 0.5 < s/c < 1.0 linear A interpolation may be used. A

A

**5.4.4.10** – The diameter  $d_{\text{bw}}$  of confining hoops used to prevent flange buckling shall be not A less than A

$$\mathbf{A} \qquad d_{\text{bw}} = \sqrt{\frac{bt_{\text{fA}} \mathbf{A}_{\text{ydfA}}}{8\mathbf{A}_{\text{ydwA}}}} \mathbf{A}$$
 5.8) **A**

in which b and  $t_f$  are the width and thickness of the flange, respectively, and  $A_{df}$  and  $A_{dw}$  are A the design yield strengths of the flange and reinforcement, respectively. A

Α

# 5.4.5. Partially-encased members A

A

**5.4.5.1** – In dissipative zones where energy is dissipated by plastic bending of a composite A section, Ahe Aongitudinal Aspacing Aof Ahe Aransverse Aeinforcement, A., Ashould Asatisfy Ahe A requirements of **5.4.4.3** over a length greater or equal to  $l_{cr}$  for dissipative zones at the end of a A member and  $2l_{cr}$  for dissipative zones in the member. A

Α

5.4.5.2 – In dissipative members, the shear resistance should be determined on the basis of the A structural Asteel Asection Aslone, Annelss Aspecial Adetails Asre Aprovided Aso Annobilise Ashe Ashear A resistance of the concrete encasement. A

Α

**5.4.5.3** – The allowable slenderness c/t) of the flange outstand in dissipative zones is as given A in **Table 5.3**. A

Α

**5.4.5.4** – Straight links welded to the inside of the flanges, as additional to the reinforcements A required by EN 1994-1-1, can delay local buckling in the dissipative zones. In this case, the A limits given in **Table 5.3** for flange slenderness may be increased if these bars are provided at A a longitudinal spacing,  $s_1$ , which is less than the flange outstand:  $s_1/c < 1.0$ . For  $s_1/c < 0.5$  the A

limits given in **Table 5.3** may be increased by up to 50%. For values of  $0.5 < s_1/c < 1.0$  linear A interpolation may be used. The additional straight links should also conform to the rules in A **5.4.5.5** and **5.4.5.6**. A

Α

**5.4.5.5** – The diameter,  $d_{\rm bw}$ , of the additional straight links referred to in **5.4.5.4** should be at A least 6 mm. When transverse links are employed to delay local flange buckling as described in A **5.4.5.4**,  $d_{\rm bw}$  should be not less than the value given by **Eq.(5.8)**. A

A

**5.4.5.6** – The additional straight links referred to in **5.4.5.4** should be welded to the flanges at A both ends and the capacity of the welds should be not less than the tensile yield strength of the A straight links. A clear concrete cover of at least 20 mm, but not exceeding 40 mm, should be A provided to these links. A

Α

5.4.5.7 — The Alesign Asf Apartially-encased Asomposite Amembers Amay Asake Anto Account Ashe A resistance of the steel section alone, or the composite resistance of the steel section and of A concrete encasement. A

A

**5.4.5.8** – The design of partially-encased members in which only the steel section is assumed A to contribute to member resistance may be carried out in accordance with the provisions of A **Chapter 4**, but the capacity design provisions of **5.3.1.2** and **5.3.2.3** should be applied. A

Α

# 5.4.6. Filled composite columns A

A

**5.4.6.1** – The allowable slenderness d/t or h/t is as given in **Table 5.3**. A

Α

**5.4.6.2** – The shear resistance of dissipative columns should be determined on the basis of the A structural steel section or on the basis of the reinforced concrete section with the steel hollow A section taken only as shear reinforcement. A

Α

**5.4.6.3** A- An Anon-dissipative Amembers, Ahe Ashear Assistance Ash Ahe Asolumn Ashould Abe A determined in accordance with EN 1994-1-1. A

Α

A

A

A

A

A A

A

A

A A

Α

Α

A A

A

Α

#### 5.5. DESIGN AND DETAILING RULES FOR MOMENT FRAMES A

A

5.5.1. Specific criteria A

A

**5.5.1.1** – **4.3.1.1** applies. A

Α

**5.5.1.2** – The composite beams shall be designed for ductility and so that the integrity of the A concrete is maintained. A

Α

5.5.1.3 – Depending on the location of the dissipative zones, either 5.3.1.2(a) or 5.3.1.2(b) A applies. A

A

**5.5.1.4** – The required hinge formation pattern should be achieved by observing the rules A given in **4.3.1.2**, **5.5.3**, **5.5.4** and **5.5.5**. A

Α

#### 5.5.2. Analysis A

A

**5.5.2.1** – The analysis of the structure shall be performed on the basis of the section properties A defined in **5.2**. A

A

**5.5.2.2** – In beams, two different flexural stiffnesses should be taken into account:  $EI_1$  for the A part of the spans submitted to positive sagging bending uncracked section) and  $EI_2$  for the A part of the span submitted to negative hogging bending (cracked section). A

Α

**5.5.2.3** – The analysis may alternatively be performed taking into account for the entire beam A an equivalent second moment of area  $I_{eq}$  constant for the entire span: A

**A** 
$$I_{\text{EqA}} = 0.6 I_{\text{f}} + 60.4 I_{\text{f}} A$$
 **5.9) A**

**5.5.2.4** – For composite columns, the flexural stiffness is given by: A

**A** 
$$EI_{c} = 0.9 (EI_{a} + 0.5E_{cmAc} + EI_{s})$$
 **5.10) A**

Where E and  $E_{\rm cm}$  are the modulus of elasticity for steel and concrete respectively;  $I_{\rm a}$ ,  $I_{\rm c}$  and  $I_{\rm s}$  A denote the second moment of area of the steel section, of the concrete and of the rebars A respectively. A

A

#### 5.5.3. Rules for beams and columns A

A

**5.5.3.1** – Composite T beam design shall conform to **5.4.2**. Partially encased beams shall A conform to **5.4.5**. A

Α

**5.5.3.2** – Beams shall be verified for lateral and lateral torsional buckling in accordance with A EN 1994-1-1, assuming the formation of a negative plastic moment at one end of the beam. A

1

**5.5.3.3** – **4.3.2.2** applies. A

Α

**5.5.3.4** – Composite trusses should not be used as dissipative beams. A

Α

5.5.3.5 - 4.3.3.1 applies. A

Δ

**5.5.3.6** – In columns where plastic hinges form as stated in **5.5.1.1**, the verification should A assume that  $M_{\rm pl,Rd}$  is realised in these plastic hinges. A

Α

**5.5.3.7** – The following expression should apply for all composite columns: A

$$\frac{N_{\rm EdA}}{N_{\rm pl.RdA}} < 0.30 \text{ A}$$
 5.11) A

**5.5.3.8** – The resistance verifications of the columns should be made in accordance with EN A 1994-1-1:2004, 4.8. A

A

**5.5.3.9** – The column shear force  $V_{\rm Ed}$  from the analysis) should be limited in accordance with A third expression in Eq.(4.4). A

A

#### 5.5.4. Beam to column connections A

A

The provisions given in **4.3.4** apply. A

A

# 5.5.5. Condition for disregarding the composite character of beams with slab $\boldsymbol{A}$

A

**5.5.5.1** – The plastic resistance of a beam section composite with slab (lower or upper bound A plastic resistance of dissipative zones) may be computed taking into account only the steel A section Adesign An Accordance Avith Concept AC As Adefined An **5.1.2** Af Ahe Alab As Aotally A disconnected from the steel frame in a circular zone around a column of diameter  $2b_{\rm eff}$ , with A  $b_{\rm eff}$  being the larger of the effective widths of the beams connected to that column. A

Α

**5.5.5.2** – For the purposes of **5.5.5.1**, totally disconnected means that there is no contact A between Alab And Any Aertical Aide Af Any Ateel Alement (e.g. Arolumns, Ahear Aronnectors, A connecting plates, corrugated flange, steel deck nailed to flange of steel section). A

Α

**5.5.5.3** – In partially encased beams, the contribution of concrete between the flanges of the A steel section should be taken into account. A

A A

A

A

A

A

A

A A

A

Α

A

A A

A

A

A A

# 5.6. DESIGN AND DETAILING RULES FOR COMPOSITE CONCENTRICALLY A BRACED FRAMES A

A

## 5.6.1. Specific criteria A

Δ

5.6.1.1 - 4.4.1.1 applies. A

Α

**5.6.1.2** – Columns and beams shall be either structural steel or composite. A

Α

**5.6.1.3** – Braces shall be structural steel. A

Α

**5.6.1.4 – 4.4.1.2** applies. A

A

## 5.6.2. Analysis A

A

The provisions given in 4.4.2 apply. A

A

## 5.6.3. Diagonal members A

Α

The provisions given in 4.4.3 apply. A

A

## 5.6.4. Beams and columns A

Α

The provisions given in 4.4.4 apply. A

A

A

A A

A

A

A

A A

A

A

A

A

A

A

A

A

A

A A

A

A

A

A A

A

# 5.7. DESIGN AND DETAILING RULES FOR COMPOSITE ECCENTRICALLY A BRACED FRAMES A

A

#### 5.7.1. Specific criteria A

Α

**5.7.1.1** – Composite frames with eccentric bracings shall be designed so that the dissipative A action Avill Accur Assentially through yielding in bending Ar Ahear As the links. All Ather A members shall remain elastic and failure of connections shall be prevented. A

Α

**5.7.1.2** – Columns, beams and braces shall be either structural steel or composite. A

**5.7.1.3** – The braces, columns and beam segments outside the link segments shall be designed A to remain elastic under the maximum forces that can be generated by the fully yielded and A cyclically strain-hardened beam link. A

Α

## 5.7.2. Analysis A

A

5.7.2.1 – The analysis of the structure is based on the section properties defined in 5.2.2. A

**5.7.2.2** – In beams, two different flexural stiffnesses are taken into account:  $EI_1$  for the part of A the spans submitted to positive sagging bending uncracked section) and  $EI_2$  for the part of A the span submitted to negative hogging) bending (cracked section). A

A

#### 5.7.3. Seismic links A

A

**5.7.3.1** – Links shall be made of steel sections, possibly composite with slabs. They may not A be encased. A

Α

- **5.7.3.2** The rules on seismic links and their stiffeners given in **4.5.2** apply. Links should be A of short or intermediate length with a maximum length *e*. A
- a) In structures where two plastic hinges would form at link ends: A

$$e = \mathbf{A} \underbrace{\mathbf{A}_{p,linkA}^{M_{p,linkA}}}_{V_{p,linkA}} \mathbf{A}$$
 5.12) **A**

(b) In structures where one plastic hinge would form at one end of a link: A

$$e < \frac{M_{\text{p,linkA}}}{V_{\text{p,linkA}}} A$$
 5.13) A

The definitions of  $M_{\rm p,link}$  and  $V_{\rm p,link}$  are given in **4.5.2.3**. For  $M_{\rm p,link}$ , only the steel components A of the link section, disregarding the concrete slab, are taken into account in the evaluation. A

**5.7.3.3** – When the seismic link frames into a Areinforced Aroncrete Arolumn or an encased A column, face bearing plates should be provided on both sides of the link at the face of the A column and in the end section of the link. A

Α

**5.7.3.4** – Connections should meet the requirements of the connections of eccentrically braced A steel frames as in **4.5.4**. A

A

A

#### 5.7.4. Members not containing seismic links A

A

**5.7.4.1** – The members not containing seismic links should conform to the rules in **4.5.3**, A taking into account the combined resistance of steel and concrete in the case of composite A elements and the relevant rules for members in **5.4** and in EN 1994-1-1:2004. A

Α

**5.7.4.2** A AWhere A Aink As Adjacent Ato A Afully Aencased Acomposite Acolumn, Aransverse A reinforcement meeting the requirements of **5.4.4** should be provided above and below the link A connection. A

A

**5.7.4.3** – In case of a composite brace under tension, only the cross-section of the structural A steel section should be taken into account in the evaluation of the resistance of the brace. A

A

Α

A

Α

A A

A

A

A

A

A A

A

A A

A

A A

A

A A

A

A

A A

A

A A

A

A

A A

A

A A

A A

# 5.8. DESIGN AND DETAILING RULES FOR STRUCTURAL SYSTEMS MADE OF A REINFORCED CONCRETE STRUCTURAL WALLS COMPOSITE WITH A STRUCTURAL STEEL ELEMENTS A

Α

#### 5.8.1. Specific criteria A

A

5.8.1.1 – The provisions in this subclause apply to composite structural systems belonging in A one of the three types defined in 5.1.3.1(e). A

Α

**5.8.1.2** – Structural system Types 1 and 2 shall be designed to behave as structural walls and A dissipate energy in the vertical steel sections and in the vertical reinforcement. The infills A shall be tied to the boundary elements to prevent separation. A

Α

**5.8.1.3** – In structural system Type 1, the storey shear forces shall be carried by horizontal A shear in the wall and in the interface between the wall and beams. A

Α

**5.8.1.4** – Structural system Type 3 shall be designed to dissipate energy in the structural walls A and in the coupling beams. A

Α

#### 5.8.2. Analysis A

A

**5.8.2.1** – The analysis of the structure shall be based on the section properties defined in A **Chapter 3** for concrete walls and in **5.2.2** for composite beams. A

Α

**5.8.2.2** – In structural systems of Type 1 or Type 2, when vertical fully encased or partially A encased structural steel sections act as boundary members of reinforced concrete infill panels, A the analysis shall be made assuming that the seismic action effects in these vertical boundary A elements are axial forces only. A

Α

**5.8.2.3** – These axial forces should be determined assuming that the shear forces are carried A by the reinforced concrete wall and that the entire gravity and overturning forces are carried A by the shear wall acting compositely with the vertical boundary members. A

Α

**5.8.2.4** – In structural system of Type 3, if composite coupling beams are used, **5.5.2.2** and A **5.5.2.3** apply. A

Α

# **5.8.3.** Detailing rules for composite walls A

A

**5.8.3.1** – The reinforced concrete infill panels in Type 1 and the reinforced concrete walls in A Types 2 and 3 shall meet the detailing requirements of **Chapter 3**. A

A

**5.8.3.2** – Partially encased steel sections used as boundary members of reinforced concrete A panels shall belong to a class of cross-section indicated in **Table 5.3**. A

Α

**5.8.3.3** – Fully Ancased Atructural Ateel Acctions Assed As boundary Amembers in Acinforced A concrete panels shall be designed in accordance with **5.4.4**. A

Α

**5.8.3.4** – Partially encased structural steel sections used as boundary members of reinforced A concrete panels shall be designed in accordance with **5.4.5**. A

Α

**5.8.3.5** – Headed shear studs or tie reinforcement (welded to, anchored through holes in the A steel members or anchored around the steel member) should be provided to transfer vertical A and horizontal shear forces between the structural steel of the boundary elements and the A reinforced concrete. A

Α

# 5.8.4. Detailing rules for coupling beams A

A

**5.8.4.1** – Coupling beams shall have an embedment length into the reinforced concrete wall A sufficient Ao Aesist Ahe Amost Adverse Acombination Aof Amoment And Ahear Agenerated Aby Ahe A bending and shear strength of the coupling beam. The embedment length  $l_e$  shall be taken to A begin inside the first layer of the confining reinforcement in the wall boundary member. The A embedment length  $l_e$  shall be not less than 1,5 times the height of the coupling beam. A

Α

5.8.4.2 – The vertical wall reinforcements, defined in 5.3.3.4 and 5.3.3.5 with design axial A strength Acqual Ac Ahe Ashear Astrength Acf Ahe Acoupling Aceam, Ashould Ace Aplaced Acver Ahe A embedment length of the beam with two-thirds of the steel located over the first half of the A embedment length. This wall reinforcement should extend a distance of at least one anchorage A length Above And below the flanges Acf the Acoupling beam. It is permitted to Asse Acertical A reinforcement placed for other purposes, such as for vertical boundary members, as part of the A required vertical reinforcement. Transverse reinforcement should conform to 5.4. A

A A

A

A

A

A A

A A

A

A A

A

A A

A

A A

A

A A

A

A A

A

A A

A A

# 5.9. DESIGN AND DETAILING RULES FOR COMPOSITE STEEL PLATE A STRUCTURAL WALLS A

A

5.9.1. Specific criteria A

A

**5.9.1.1** – Composite steel plate shear walls shall be designed to yield through shear of the A steel plate. A

Α

**5.9.1.2** – The steel plate should be stiffened by one or two sided concrete encasement and A attachment to the reinforced concrete encasement in order to prevent buckling of steel. A

A

#### 5.9.2. Analysis A

A

The analysis of the structure should be based on the materials and section properties defined A in 5.2.2 and 5.4. A

Α

#### 5.9.3. Detailing rules A

A

**5.9.3.1** – It shall be checked that A

$$V_{EdA} < \omega V_{Rd/} A$$
 5.14) A

with the shear resistance given by: A

$$V_{RdA} = \omega I_{flA} \frac{ydA}{\sqrt{3}} A$$
 5.15) A

where  $A_{pd}$  is the design yield strength of the plate and  $A_{pl}$  is the horizontal area of the plate. A

**5.9.3.2** – The connections between the plate and the boundary members (columns and beams), A as well as the connections between the plate and the concrete encasement, shall be designed A such that full yield strength of the plate can be developed. A

A

**5.9.3.3** – The Ateel plate Ahall be Atontinuously Atonnected An All Adges to Atructural Ateel A framing and boundary members with welds and/or bolts to develop the yield strength of the A plate in shear. A

Α

**5.9.3.4** – The boundary members shall be designed to meet the requirements of **5.8**. A

**5.9.3.5** – The concrete thickness should be not less than 200 mm when it is provided on one A side and 100 mm on each side when provided on both sides. A

Α

**5.9.3.6** – The minimum reinforcement ratio in both directions shall be not less than 0,25%. A

**5.9.3.7** – Openings in the steel plate shall be stiffened as required by analysis. A

A

A

A

Α

A A A

# CHAPTER 6 A PERFORMANCE-BASED SEISMIC DESIGN REQUIREMENTS A FOR TALL BUILDINGS A

FOR TALL BUILDINGS A Α 6.1. ANALYSIS PROCEDURES FOR TALL BUILDINGS A **6.1.1** – In the linear elastic analysis of tall buildings required for design stages described in A **6.3.1** and **6.3.3**, Multi-mode Response Spectrum Analysis procedure described in **2.4** or Linear f Response History Analysis procedure described in 2.5.1 shall be employed. A **6.1.2** – In the nonlinear analysis of tall buildings required for design stages described in **6.3.2** A and 6.3.4, Direct Integration procedure shall be employed in the time domain. A A **6.1.3** – In nonlinear analysis, a minimum seven earthquake ground motion sets shall be used A in accordance with 1.2.3 and the acceleration records in the two perpendicular directions shall A be applied simultaneously along the principal axes of the structural system. Subsequently A directions of acceleration records shall be rotated by 90° and the analysis shall be repeated. A Design basis seismic demands shall be calculated as the average of results obtained from the A minimum 2\*7 = 14 analysis. A 6.1.4 – In the linear Ar Anonlinear Analysis Arf tall buildings, damping Anatio Ahall be taken Α  $\xi = 0.05$  as a maximum. Second order  $(P - \Delta)$  effects shall be taken into account. A **6.1.5** – In the cases where needed, vertical component of the earthquake ground motion may A be considered as well, subject to approval of the *Independent Reviewer s*. A A A A A A A A A A A A A A A

# 6.2. REQUIREMENTS FOR ANALYSIS MODELING A

A

**6.2.1** — Modeling A farame Aslements Ashall Ase Anade Awith Arame finite elements As An Ainear A analysis. Modeling in nonlinear analysis can be made with plastic sections plastic hinges in A the framework of lumped plasticity approach or through Aber elements in the framework of A distributed plasticity approach. Regarding the plastic hinge length, an appropriate empirical A relationship Asnay Ase Aslected Afrom Ashe Asterature, Asubject Aso Aspproval As fashe Andependent f Reviewer s. In nonlinear analysis, alternative modeling approaches may be followed upon the A approval of Independent Reviewer s. In linear and nonlinear models of steel frames, shear A deformation in the beam-column panel zone shall be considered. A

A

**6.2.2** – In linear analysis, modeling of reinforced concrete walls and their parts shall be made A with *shell finite elements*. In simple walls, frame elements may be used as an alternative. A When shell elements are used, elastic modulus E) of shell elements can be appropriately A reduced in bending in order to be consistent with the *ef ective bending rigidities* of the frame A elements with cracked sections (see **6.2.4** . A

A

**6.2.3** – In modeling reinforced concrete walls and their parts for nonlinear analysis, *Aiber f elements* Aor Auternative Amodeling Aoptions Amay Aoe Aused An Ahe Arramework Aof Adistributed A plasticity approach, subject to approval of the *Independent Reviewer s*. Shear stiffnesses of A reinforced concrete walls shall be considered. A

Α

**6.2.4** – Effective bending rigidities shall be used for reinforced concrete frame elements with A cracked sections. In the preliminary design stage described in **6.3.1**, empirical relationships A given An Ahe Atelevant Aiterature Anay Ave Autilized. An Aother Alesign And Averification Atages A described in **6.3**, effective bending Aigidity Ahall be obtained from the Acction's Anoment-A curvature relationship as follows: A

A 
$$EI = \bigoplus_{eA} \frac{M_Y}{\phi_{VA}^A} = \bigoplus_{\phi \neq Q_A} A$$
 6.1) A

where  $Mf_Y$ , represents the state of first-yield in the section. The corresponding curvature  $\Phi \varphi_Y$  represents a state where either concrete strain attains a value of 0.002 or steel strain reaches A the yield value, whichever occurs first. The nominal plastic moment  $M_{NY}$  corresponding to A effective yield curvature  $\Phi \varphi_Y$  is calculated with concrete compressive strain reaching 0.004 or A steel strain attaining 0.015, whichever occurs first. In calculating the moment strengths of A columns, axial forces due to gravity loads only may be considered. A

A

**6.2.5** – In preliminary design Atage described in **6.3.1**, design Atrengths,  $A_1$ , A fancrete, A reinforcing steel and structural steel are defined as the relevant characteristic strengths,  $A_2$ , A divided by material safety factors. In other design and verification stages in **6.3**, expected A strentghs,  $A_2$ , shall be used as design strengths without any material safety factors. The A following relationships may be considered between the expected and characteristic strengths: A

|   | Concrete                 | $A_{\rm eA} 1.3 A_{\rm kA}$ |               |
|---|--------------------------|-----------------------------|---------------|
|   | Reinforcing steel        | $A_{yeA}$ 1.17 $A_{ykA}$    |               |
| A | Structural steel (S 235) | $A_{yeA}$ 1.5 $A_{ykA}$ A   | <b>6.2)</b> A |
|   | Structural steel (S 275) | $A_{yeA}$ 1.3 $A_{ykA}$     |               |
|   | Structural steel (S 355) | $A_{yeA}$ 1.1 $A_{ykA}$     |               |

**6.2.6** – Bi-linear backbone curves may be considered in hysteretic relationships of plastic A sections plastic hinges of frame elements. Stiffness and strength degradation effects shall be A considered upon the approval of *Independent Reviewer s* . A

A

**6.2.7** – At floor levels where abrupt changes in particular downward changes occur in lateral A stiffness of vertical structural elements, a special care shall be paid for the arrangement of A appropriate *trans er floors* with sufficient in-plane stiffness and strength. A

A

**6.2.8** – The stiffness of the foundation and the soil medium shall be considered by appropriate A models to be approved by the *Independent Reviewer(s* . When needed, nonlinear behaviour of A soil-foundation system may be taken into account in design stages described in **6.3.2** and A **6.3.4**. A

A

A

A

A A

A

A

A A

A

A A

A A

A

A A

A

A A

A

A

A A

A A

A

A

A A

A

A A

A

A A

# 6.3. PERFORMANCE-BASED SEISMIC DESIGN STAGES OF TALL BUILDINGS A

Performance-based design stages of tall buildings are described in the following. A

A

6.3.1. Design Stage (I – A): Preliminary Design (dimensioning) with Linear Analysis for A Controlled Damage/Life Safety Performance Objective under (E2 Level A Earthquake A

A

**6.3.1.1** – This design stage aims at preliminary dimensioning of tall building for  $Li\ e\ Safety\ /f\ Controlled\ Damage\ performance\ objective\ (see Table 6.1\ ,\ A$ 

Α

**6.3.1.2** – **A** linear analysis shall be performed in the framework of *Strength-Based Design* A approach with reduced seismic loads according to **Chapter 2** under E2) level earthquake for A *Normal Occupancy Buildings* according to **Table 1.2**, and under (E3) level earthquake for A *Special Occupancy Buildings*. A

Α

**6.3.1.3** – Minimum base shear requirement given by **Eq.(2.4)** shall be applied. A

**6.3.1.4** – Preliminary design shall normally follow the design requirements of **Chapters 3**, **4** A or **5**, however deviations from those requirements may be permitted upon the approval of A *Independent Reviewer s* . A

Α

# 6.3.2. Design Stage (I – B): Design with Nonlinear Analysis for Life Safety / Controlled A Damage Performance Objective under (E2) Level Earthquake A

 $\mathbf{A}$ 

**6.3.2.1** – The structural system of a tall building, which is preliminarily designed in Design A Stage A(I A· A), Ashall Abe Aslesigned Aunder A(he Asame Aevel Abf Asarthquake Afor A(Li e Safety /f Controlled Damage performance objective. A

٨

**6.3.2.2** – A nonlinear analysis shall be performed according to the requirements of **6.2** (see A **Table 6.1**). Accidental eccentricity effects need not to be considered in this analysis. A

- **6.3.2.3** The seismic demands obtained according to **6.1.3** as the average of the results of A minimum 2\*7=14 analysis shall be compared with the following capacities: A
- **a)** Interstory drift ratio of each vertical structural element shall not exceed 0.025 at each story A in each direction. A
- **b** Upper limits of concrete compressive strain at the extreme fiber inside the confinement A reinforcement And Ahe Areinforcing Asteel Astrain Are Agiven An Ahe Afollowing Afor Areinforced A concrete sections satisfying the confinement requirements: A

A 
$$\varepsilon_{\text{QA}} = 0.0135$$
 ;  $\varepsilon_{\text{Q}} = 0.04$  A **6.3)** A

- **c)** Deformation capacities of structural steel frame elements shall be taken from ASCE/SEI A 41-06\* for *Li e Safety* performance objective. A
- **d** Shear capacities of reinforced concrete structural elements shall be calculated from EN A 1992-1-1: 2005 using expected strengths given in **6.2.5**. A A

<sup>\*</sup>ASCE/SEI 41-06: Seismic Rehabilitation of Existing Buildings, American Society of Civil A Engineers, 1st edition, 15/05/2007. A

**e)** In the event where any of the requirements given in **a)** through **d** above is not satisfied, A all design stages shall be repeated with a modified structural system. A

A

6.3.3. Design Stage (II): Design Verification with Linear Analysis for Minimum Damage/ A Immediate Occupancy Performance Objective under (E1) Level Earthquake A

A

**6.3.3.1** – The tall building structural system, which is preliminarily designed in Design Stage A I - A) and subsequently designed in Design Stage I - B), shall be verified for *Immediate f Occupancy / Minimum Damage* performance objective. A

A

**6.3.3.2** – A linear analysis shall be performed according to requirements given in **6.2** under A (E1) level earthquake for *Normal Occupancy Buildings* and under (E2) level earthquake for A *Special Occupancy Buildings* see **Table 6.1**). Accidental eccentricity effects need not to be A considered in this analysis. A

Α

**6.3.3.3** – Verification-basis internal forces shall be obtained as those calculated from linear A elastic analysis i.e.,  $A_{R,l}$  1.0), irrespective of the type of the structural system. Those forces A shall be shown not to exceed the strength capacities of cross sections calculated with expected A material strengths given in **6.2.5**. A

A

**6.3.3.4** – Interstory drift ratio of each vertical structural element obtained according to **2.7.1** A shall not exceed 0.01 at each story in each direction. A

A

**6.3.3.5** – In the event where **6.3.3.3** and/or **6.3.3.4** is not satisfied, all design stages shall be A repeated with a modified structural system. A

Δ

6.3.4. Design Stage (III): Design Verification with Nonlinear Analysis for Extensive A Damage/ Collapse Prevention Performance Objective under (E3) Level A Earthquake A

A

**6.3.4.1** – The tall building structural system, which is preliminarily designed in Design Stage A I – A) and subsequently designed in Design Stage I – B , shall be verified for *Extensive f Damage / Collapse Prevention* performance objective. A

Α

6.3.4.2 – A nonlinear analysis shall be performed under E3) level earthquake according to A requirements given in 6.2 (see ATable 6.1. A ccidental Accentricity Affects Aleed Atot to be A considered in this analysis. A

A

- **6.3.4.3** The seismic demands obtained according to **6.1.3** as the average of the results of A minimum 2\*7=14 analysis shall be compared with the following capacities: A
- a) Interstory drift ratio of each vertical structural element shall not exceed 0.035 at each story A in each direction. A
- b Upper limits of concrete compressive strain at the extreme fiber inside the confinement A reinforcement And Ahe Ateinforcing Ateel Atrain Are Agiven An Ahe Afollowing Afor Ateinforced A concrete sections satisfying the confinement requirements: A

A  $\varepsilon \omega_{A} = 0.018$  ;  $\varepsilon \omega = 0.06$  A **6.4)** A

A

- **c)** Deformation capacities of structural steel frame elements shall be taken from ASCE/SEI A 41-06\* for *Collapse Prevention* performance objective. A
- **d** Shear capacities of reinforced concrete structural elements shall be calculated from EN A 1992-1-1: 2005 using expected strengths given in **6.2.5**. A
- e) In the event where any of the requirements given in a) through d above is not satisfied, A all design stages shall be repeated with a modified structural system. A A

Table 5.1. Performance-based design stages of tall buildings A

| Design Stage                                      | Design Stage A<br>I – A A                                                                  | Design Stage A                                                            | Design Stage A<br>II A                                                                         | Design Stage A<br>III A                                                   |
|---------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Design type f                                     | Prelim. design A (dimensioning A                                                           | Design A                                                                  | Verification A                                                                                 | Verification A                                                            |
| Earthquake f<br>Level f                           | Normal class f buildings f (E2) earthquake f Special class f buildings f (E3) earthquake f | Special class f<br>buildings f                                            | Normal class f buildings f A (E1) earthquake A Special class f buildings f A (E2) earthquake A | (E3) earthquake A                                                         |
| Per ormance f<br>objective f                      | Life Safety A                                                                              | Life Safety A                                                             | Immediate A<br>Occupancy A                                                                     | Collapse A<br>Prevention A                                                |
| Analysis type f                                   | 3-D Linear A Response A Spectrum A nalysis A                                               | 3-D Nonlinear A<br>Time-history A<br>nalysis A                            | 3-D Linear A Response A Spectrum A nalysis A                                                   | 3-D Nonlinear A<br>Time-history A<br>nalysis A                            |
| Behaviour f<br>Factor f                           | $q \le 5.0 \text{ A}$                                                                      | - A                                                                       | q = 1.0  A                                                                                     | - A                                                                       |
| Story dri t f<br>ratio limit f                    | % 2 A                                                                                      | % 2.5 A                                                                   | % 1 A                                                                                          | % 3.5 A                                                                   |
| Section f<br>stif ness in R/C f<br>rame members f | Effective A stiffness A                                                                    | Effective A<br>stiffness A<br>(from moment-A<br>curvature A<br>analysis A | Effective A<br>stiffness A<br>(from moment-A<br>curvature A<br>analysis A                      | Effective A<br>stiffness A<br>(from moment-A<br>curvature A<br>analysis A |
| Material f<br>strengths f                         | Design A strength A                                                                        | Expected A strength A                                                     | Expected A strength A                                                                          | Expected A strength A                                                     |
| Acceptance f<br>criteria f                        | Strength A Story drift ratio A                                                             | Strains & Story A drift ratio A                                           | Strength A Story drift ratio A                                                                 | Strains & Story A A drift ratio A                                         |



<sup>\*</sup>ASCE/SEI 41-06: Seismic Rehabilitation of Existing Buildings, American Society of Civil A Engineers, 1st edition, 15/05/2007. A

# 6.4. DESIGN REQUIREMENTS FOR NONSTRUCTURAL ARCHITECTURAL A AND MECHANICAL/ELECTRICAL ELEMENTS/COMPONENTS A

A

#### 6.4.1. General A

Α

**6.4.1.1** – Independently Acesponding Appendages Abalcony, Aparapet, Achimney, Act. Ahat Are A supported by the main structural system of the tall buildings, façade and partioning elements, A architectural components, mechanical and electrical components and their connections shall A be analysed for the seismic effects given in this Section. A

Α

6.4.1.2 – Component attachments shall be bolted, welded, or otherwise positively fastened A without consideration of frictional resistance produced by the effects of gravity. A continuous A load Apath Apf Aufficient Atrength And Atiffness Apetween Ahe Acomponent And Ahe Aupporting A structure shall be provided. Local elements of the structure including connections shall be A designed And Aconstructed for the Acomponent forces Awhere they Acontrol the design Apf the A elements or their connections. A

A

- **6.4.1.3** (E3) Earthquake Level (see **1.2.1** shall be considered for the following nonstructural A elements and their attachements to the structure: **A**
- a) Elements and components in buildings of Special Occupancy Class (Table 1.2, A
- **b** Elements and components in buildings of *Normal Occupancy Class* (**Table 1.2**) that are A required to remain operational immeadiately after the earthquake, A
- c) Elements and components related to hazardous material. A

A

**6.4.1.4** – (E2) Earthquake Level (see **1.2.1**) shall be considered for nonstructural elements A and components other than those classified in **6.4.1.3**. A

A

**6.4.1.5** – If the mass of the nonstructural element or component is greater than 20% of the A storey mass, the element or the component shall be considered an element of the structural A system with its mass and stiffness characteristics. A

Δ

#### 6.4.2. Equivalent Seismic Loads A

Α

**6.4.2.1** – The seismic design force, A, applied in the horizontal direction shall be centered at A the Acomponent's Acenter A fagravity A and A distributed A relative A to A the Acomponent's A distribution and shall be determined as follows: A

A

A 
$$_{\text{eA}} = A \frac{m_{\text{e}} A_{\text{e}} B f}{q_{\text{eA}}} A$$
 **6.5**) A

where  $A_{ne}$  represents the Amass,  $A_{e}$  is the Amaximum Acceleration Acting Aon the Atlement Aor A component,  $B_{e}$  represents the amplification factor and  $q_{e}$  refers to behaviour factor defined for A the element or component.  $B_{e}$  and  $R_{e}$  are given for architectural and mechanical/electrical A components in **Table 6.2** and **Table 6.3**, respectively. A

٨

6.4.2.2 – The maximum acceleration acting on the element or component shall be defined as A the maximum value to be obtained from the following: A A

- a) Maximum value of average total accelerations obtained from nonlinear analysis at Stage A I-B for *Normal Occupancy Class* buildings and at Stage III for *Special Occupancy Class* A buildings may be defined as  $A_{\rm e}$ . A
- **b** An Aparticular Acases Awhere Amass And Astiffness Acharacteristics Aof Acomponent Aor Ats A attachement is Acquired to be Aconsidered,  $M_e$  may be Acalculated As A Apectral Acceleration A corresponding to Actural period,  $M_e$ , Aof the Acomponent from the Acor spectrum obtained A through the analysis in **b** . natural period,  $T_e$ , may be calculated from; A

A 
$$T_{\rm eA} = 2\pi \omega \frac{mf}{kf_{\rm eA}} A \qquad \qquad 6.6 A$$

where  $A_{\text{te}}$  Are presents Athe Aeffective Astiffness Acoefficient Acf Athe Anonstructural Aelement Acr A component. In this case, amplification factor defined in Eq.(6.5) shall be taken as  $B_{\text{e}}$  1. A

**6.4.2.3** – Equivalent seismic load calculated with Eq.(6.5) shall not be less than the minimum A load defined below: A

A 
$$\min A = 0.3 mf S f_{D,t} A$$
 6.7 A

- **6.4.2.4** Equivalent seismic load given in Eq.(6.5) shall be applied independently in both A horizontal Aarthquake Adirections An Acombination Awith Ahe Alead Aoad, Aervice Aoads Aof Ahe A element or component plus a vertical seismic load equal to  $\pm 0.2\,m_{\rm e}\,S_{\rm SD/}$  A
- **6.4.2.5** For elements or components suspended from the structural system (with chains, A cables, etc), a seismic load equal to 1.4 times the weight of the element or component shall be A applied simultaneously in both horizontal and vertical directions. A

A

A

A

A

A

A

A

A

A

A

A

A

A

Table 6.2. Amplification and Behaviour Factors for architectural components A

| A                                                                          |                   |             |
|----------------------------------------------------------------------------|-------------------|-------------|
| rchitectural element or component A                                        | $B_{\mathrm{e}}f$ | $q_{ m e}f$ |
| A                                                                          |                   |             |
| Nonstructural plain masonry internal walls and partitions A                | 1.0 A             | 1.5 A       |
| Nonstructural other internal walls and partitions A                        | 1.0 A             | 2.5 A       |
| Cantilever elements unbraced or braced below their centres of gravity A    | 2.5 A             | 2.5 A       |
| (parapets, cantilever internal walls, laterally supported chimneys, etc. A | 2.3 A             | 2.3 A       |
| Cantilever elements braced above the centre of gravity (cantilever A       | 1.0 A             | 2.5 A       |
| internal walls, chimneys, etc A                                            | 1.0 A             | 2.3 A       |
| External walls and connections A                                           | 1.0 A             | 2.5 A       |
| Wood panels A                                                              | 1.0 A             | 1.5 A       |
| Penthouses independent from structural system A                            | 2.5 A             | 3.5 A       |
| Suspended ceilings A                                                       | 1.0 A             | 2.5 A       |
| Storage cabinets and laboratory equipment A                                | 1.0 A             | 2.5 A       |
| ccess floors A                                                             | 1.0 A             | 1.5 A       |
| Signs and billboards A                                                     | 2.5 A             | 2.5 A       |
| Other rigid components A                                                   | 1.0 A             | 2.5 A       |
| Other flexible components A                                                | 2.5 A             | 2.5 A       |
| A                                                                          |                   |             |

Table 6.3. Amplification and Behaviour Factors for mechanical/electrical components A

| A                                                      |                   |             |
|--------------------------------------------------------|-------------------|-------------|
| Mechanical/electrical element or component A           | $B_{\mathrm{e}}f$ | $R_{ m e}f$ |
| A                                                      |                   |             |
| Boilers and Furnaces A                                 |                   | 2.5 A       |
| Pressure vessels on skirts and free-standing A         |                   | 2.5 A       |
| Stacks A                                               | 2.5 A             | 2.5 A       |
| Cantilevered chimneys A                                | 2.5 A             | 2.5 A       |
| Other A                                                | 1.0 A             | 2.5 A       |
| Piping Systems A                                       | A                 | A           |
| High deformability elements and attachments A          | 1.0 A             | 3.5 A       |
| Limited deformability elements and attachments A       | 1.0 A             | 2.5 A       |
| Low deformability elements and attachments A           | 1.0 A             | 1.5 A       |
| HVAC System Component A                                | A                 | A           |
| Vibration isolated A                                   | 2.5 A             | 2.5 A       |
| Non-vibration isolated A                               |                   | 2.5 A       |
| Mounted in-line with ductwork A                        | 1.0 A             | 2.5 A       |
| Other A                                                |                   | 2.5 A       |
| Elevator Components A                                  | 1.0 A             | 2.5 A       |
| Escalator Components A                                 | 1.0 A             | 2.5 A       |
| General Electrical A                                   | A                 | A           |
| Distribution systems (bus ducts, conduit, cable tray A | 2.5 A             | 4.0 A       |
| Equipment A                                            | 1.0 A             | 2.5 A       |
| Lighting Fixtures A                                    | 1.0 A             | 1.5 A       |

**A** A

A

A

### 6.4.3. Limitation of displacements A

A

**6.4.3.1** – In cases where nonstructural elements or components are attached to two different A points of the same structure experiencing different displacements, or attached to two different A structural systems, the effects of relative displacements between the points of attachement A shall be considered. Relative displacements shall be calculated from the results of nonlinear A analysis of the structural system at Design Stage I-B for *Normal Occupancy Class* buildings A see **6.3.2**) or at Design Stage III for *Special Occupancy Class* buildings (see **6.3.4** . A

**6.4.3.2** – Relative displacements of nonstructural elements or components,  $\delta_{e\,A}$  shall not be A more than the value given in Eq.(6.8). A

$$\delta A \leq \alpha \left( hf - hf_A A \frac{\delta_{A - \max A}}{h_{iA}} A \right)$$
**6.8** A

where  $A_{0x}$  And  $A_{0y}$  Ampresent Ahe Americal Adistances And Anop And Anottom Anttachement Anoints, A respectively, of the nonstructural element or component measured from the relevant floor A level.  $\delta_{i \text{ max}} / h_{i}$  is the allowable storey drift ratio specified in 6.3.2 for Normal Occupancy f Class buildings and in 6.3.4 for Special Occupancy Class buildings. A

6.4.3.3 — Relative displacements of nonstructural elements or components attached to two A different structural systems shall be calculated as the absolute sum of the maximum relative A displacements Act Apoints Act Actachement Acnd Act Achall Acot Ace Acnore Achan Acha Acalue Agiven Acn A Eq.(6.9). A

$$\delta_{\epsilon}^{\mathbf{A}} \leq \omega h f_{\mathbf{A}} \frac{\delta_{\mathbf{i}\mathbf{A}}}{h_{\mathbf{i}\mathbf{A}}} + h f_{\mathbf{y}} \frac{\delta_{\mathbf{i}\mathbf{B}\mathbf{A}\mathbf{max}\mathbf{A}}}{h_{\mathbf{i}\mathbf{B}\mathbf{A}}} \mathbf{A}$$

$$\mathbf{6.9} \mathbf{A}$$

where  $\delta_{iA max} / h_{iA}$  ve  $\delta_{iB max} / h_{iB}$  represent the allowable storey drift ratios of the first and A second Atructural Asystems, Asspectively, Aspecified An As.3.2 for ANormal Occupancy Class A buildings and in 6.3.4 for Special Occupancy Class buildings. A

Α

#### 6.4.4. Nonstructural façade elements and connections A

Α

Glass or curtain wall façade elements of tall buildings shall be subjected to static and dynamic A tests described in the following standards: A

- a) "Recommended Static Test Method for Evaluating Curtain Wall and Store ront Systems f Subjected f to f Seismic f and f Wind f Induced f Story f Dri ts", A MA A501.4-00, A merican A rehitectural Manufacturing Association, Schaumburg, Illinois, 2001. A
- (b) "Recommended Dynamic Test Method for Determining the Seismic Dri t Causing Glass f Fallout f rom a Wall System", A MA 501.6-01, A merican A rehitectural AManufacturing A ssociation, Schaumburg, Illinois, 2001. A

A

#### 6.5. INDEPENDENT DESIGN REVIEW A

A

Design As f Aall Avuildings According As Ashis Code Ashall Ase Aseer Aseviewed And Andorsed Asy A independent reviewers in all design stages, starting from the structural system inception stage. A The administrative structure of the independent design review process will be established by A Dubai Municipality. A

Α

# CHAPTER 7 A STRUCTURAL HEALTH MONITORING SYSTEMS A FOR TALL BUILDINGS A

Α

Health monitoring systems shall be established in all tall buildings in order to monitor the real A behaviour of tall building structural systems, to improve the existing seismic and wind codes A and to predict the level of seismic damage in a tall building immediately after the ocurrence of A an Ararthquake. A Appical Arealth Amonitoring Asystem Ahall Arave A Aminimum & Acceleration A sensors distributed in the building, as shown in Fig.7.1. A

- a) A cceleration Aensors Ahall be Ayncronized And Aonnected to A 24-bit digital Aecording A system Aquipped Avith A GPS Atard. Recording Aystem shall Aecord the building Aribrations A continuously and transfer the data in real time to a prescribed centre via internet, modem or A similar channels. Sufficient battery and disk capacity shall be provided against electricity and A communication shortages, which will help the system operate and store data for at least a A period of one week. A
- **b** Technical Apecification Asf Aensors And Aecording Aystems Ahall be provided by Dubai A Municipality. A
- c) Vibration records shall be transferred in real time to the *Structural Health Monitoring f Centre* of Dubai Municipality. The records shall be stored at this centre as well as by the A building owner. A



Figure 7.1 A A A

# NNEX A A SOIL CLASSIFICATION FOR A SPECIFICATION OF SEISMIC GROUND MOTION A

A

# .1. Soil classification procedure A

Α

.1.1 A Fror Ahe Apurpose A f Apecifying Aslastic Assponse Apectrum, Ahe Aite Aoil Ahall Ase A classified According to A able A.1. Where the Aoil properties given in A able A.1 are Asot A known in sufficient detail to determine the soil class, it shall be permitted to assume Soil A Class D unless Dubai Municipality determines that Soil Class E or F could apply at the site or A in the event that Site Class E or F is established by geotechnical data. A

A

Table A.1. Soil classification parameters A

| Soil Class A                                  | $\overline{v}f_{\ell}$ (m/s <b>A</b>                                                                                                                                            | $\overline{N}$ or $\overline{N}_{h^A}$ | $\overline{s}f_{h}(kPa A$ |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|
| A. Hard rock A                                | > 1500 A                                                                                                                                                                        | NA A                                   | NA A                      |
| B. Rock A                                     | 760 – 1500 A                                                                                                                                                                    | NA A                                   | NA A                      |
| C. Very dense soil and soft rock A            | 360 – 760 A                                                                                                                                                                     | > 50 A                                 | 100 A                     |
| <b>D</b> . Stiff soil A                       | 180 – 360 A                                                                                                                                                                     | 15 - 50  A                             | 50 – 100 A                |
| E. Soft clay soil A                           | < 180 A                                                                                                                                                                         | < 15 A                                 | < 50 A                    |
| A                                             | or any profile with                                                                                                                                                             | h more than 3 r                        | n of soil with A          |
|                                               | Plasticity index: <i>I</i>                                                                                                                                                      | PI > 20  A                             |                           |
|                                               | Moisture content: $w \ge 40\%$ A                                                                                                                                                |                                        |                           |
|                                               | Undrained shear strength: $\overline{s}_{h} < 25 \text{ kPa A}$                                                                                                                 |                                        |                           |
| F. Soils requiring site response A analysis A | 1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, A quick and highly sensitive clays, collapsible A weakly cemented soils A |                                        |                           |
|                                               | 2. Peat and/or highly organic clays with more A than 3 m. A                                                                                                                     |                                        |                           |
|                                               | 3. Very high plasticity clays with more than 7.5 m and <i>PI</i> > 75 A                                                                                                         |                                        |                           |
|                                               | 4. Very thick, soft/medium stiff clays with more A than 35 m and $s_u$ < 50 kPa A                                                                                               |                                        |                           |

A A

.1.2 – The parameters used in **Table A.1** to define the Soil Class are based on the upper 30 A m As f the Aite profile. Profiles Acontaining distinctly different Acoil And Acock layers Ashall be A subdivided into those layers designated by a number that ranges from 1 to n at the bottom A where there are a total of n distinct layers in the upper 30 m. The symbol i then refers to any A one Asf Ashe Asayers Acotween A And An. Rarameters Asharacterizing Apper Aso Am As Alefined Ass A follows: A

(a) A 
$$\overline{v}_{sA} = \omega_{nA}^{i} \frac{d_{iA}}{d_{i}} A$$
 A.1)  $f$ 

98

Α

A

where  $v_{si}$  = shear wave velocity in m/s A

 $d_i$  thickness of any layer (between 0 and 30 m).  $\sum_{i=1A}^{nA} d_i$  is equal to 30 m. A

Α

$$\begin{array}{cccc}
& \sum_{i=1A}^{n} d_{iA} \\
& \sum_{i=1A}^{nA} d_{iA}
\end{array}$$

$$\begin{array}{cccc}
& A.2) f
\end{array}$$

where  $AV_i = AS$  tandard AP enetration AR esistance As Adirectly, Ameasured An Ahe Afield Avithout A corrections, and shall not be taken greater than 100 blows/ft. Where refusal is met for a rock A layer,  $AV_i$  shall be taken As 100 blows/ft.  $AV_i$  and  $AV_i$  in AE  $\mathbf{q}$ . (A.2) are for Asohesionless Asoil, A cohesive soil and rock layers. A

A

(c) A 
$$\bar{N}_{chA} = \omega_{mA} \frac{df_{chA}}{d_{i}} A$$
 A.3)  $f$ 

Α

where  $N_i$  and  $d_i$  in Eq.(A.3) are for cohesionless soil layers only. A

 $d_s$  total thickness of cohesionless soil layers in the top 30 m.  $\sum_{i=1}^{mA} d_{iA} = \mathbf{d}_s$  A

A

**d A** 
$$\overline{s}_{uA} = \omega_{kA} \frac{df_A}{d_i} A \qquad .4) f$$

A

where  $s_{ui}$  = undrained shear strength in kPa, and shall not be taken greater than 250 kPa. A

 $d_c$  total thickness of cohesive soil layers in the top 30 m.  $\sum_{i=1A}^{kA} d_{iA} = \omega_c$  A

## .2. Steps for classifying Soil Classes C,D,E,F A

Δ

**Step 1:** Check for the four categories of Soil Class F see **Table A.1**) requiring site-specific A evaluation. If the site corresponds to any of these categories, classify the site as Soil Class F A and conduct a site-specific evaluation. A

A

**Step 2:** Check for the existence of a total thickness of soft clay > 3 m where a soft clay layer A is defined by  $s_u < 25$  kPa,  $w \ge 40\%$  and PI > 20. If these criteria are satisfied, classify the site A as Soil Class E. A

Α

**Step 3:** Categorize the site using one of the following three methods with  $\overline{A}_s$ ,  $\overline{N}$  and  $\overline{A}_u$  f computed in all cases as specified in A.1.2: A

Α

- a)  $\overline{v}_s$  for the top 30 m ( $\overline{v}_s$  method) A
- **b**  $\overline{N}$  for the top 30 m ( $\overline{AV}$  method) A
- c)  $\overline{N}_{\text{ch.}^{A}}$  for cohesionless soil layers PI < 20) in the top 30 m and average  $\overline{s}_{\text{u}}$  for cohesive soil A layers (PI > 20) in the top 30 m ( $\overline{s}_{\text{u}}$  method) A

If  $M_{L^{A}}$  method is used and,  $M_{L^{A}}$  and  $M_{L^{A}}$  criteria differ, the category with the softer soils shall be A selected (for example, use Soil Class E instead of D). A

3. Classifying Soil Classes A,B A

- .3.1 Assignment of Soil Class B shall be based on the shear wave velocity for rock. For A competent Arock Avith Amoderate Afracturing And Aveathering, Asstimation Ar Ahis Ashear Avave A velocity shall be permitted. For more highly fractured and weathered rock, the shear wave A velocity shall be directly measured or the site shall be assigned to Soil Class C. A
- .3.2 A ssignment As f Asoil A Class A shall As Asupported Asy Asither Ashear Awave Aelocity A measurements on site or shear wave velocity measurements on profiles of the same rock type A in the same formation with an equal or greater degree of weathering and fracturing. Where A hard rock conditions are known to be continuous to a depth of 30 m, surficial shear wave A velocity measurements may be extrapolated to assess  $\overline{v}_s$ . f
- f
  .3.3 Soil Classes A and B shall not be used where there is more than 3 m of soil between A the rock surface and the bottom of the spread footing or mat foundation. A
  A