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CHAPTER1 A
GENERAL REQUIREMENTS A
A
1.1. SCOPE, NOTATIONS, REFERENCE STANDARDS A
A
1.1.1. Scope A
A

1.1.1.1 — This standard covers the seismic analysis and design requirements of reinforced A
concrete And Ateel Auilding Atructures Ao Ae Aonstructed Avithin Aoundaries Af Amirate Af A
Dubai. A

A

1.1.1.2 — This Atandard is Applicable to low- to Anedium Aise buildings As Avell As to tall A
buildings, as defined in 1.3.1. A

a) All parts of this standard excluding Chapters 6 and 7 are applicable to low- to medium A
rise buildings. A

b Special seismic analysis and design requirements applicable to tall buildings are given in A
Chapters 6 and 7. Parts of sections 1.2 and 1.3 of Chapter 1 as well as parts of Chapter 2 A
that are referred to in Chapter 6 are also applicable to tall buildings. A

A

1.1.1.3 — Civil engineering structures other than buildings are outside the scope of this code. A
A

1.1.1.4 — Base-isolated buildings as well as buildings equipped with active or passive control A
systems and devices are outside the scope of this code. A

A

1.1.2. Notations A

A

A A =Gross area of seismic link A

A. A =Total effective area of structural walls in the first storey for empirical calculation of A
predominant period in the eartquake direction [m?] A

A. A = Maximum acceleration acting on nonstructural element or component A

A4; A = Effective area of the j’th structural walls in the first storey for empirical calculation A
of predominant period in the eartquake direction [m?*] A

Ap A = Horizontal area of the plate A

Ay A = Area of one leg of the transverse reinforcement; area of stiffener A

B. A = Amplification factor for nonstructural element or component A

b A = Width of the flange A

by A = Width of composite beam or bearing width of the concrete of the slab on the A
column A

b. A = Cross sectional dimension of column A

b. A = Partial effective width of flange on each side of the steel web A

besr A = Effective flange width of beam in tension at the face of a supporting column; total A
effective width of concrete flange A

bi A = Distance between consecutive bars engaged by a corner of a tie or a cross-tie in a
column A
b, A = Width of a confined core in a column or in the boundary element of a wall (to A

centerline of hoops) A
by A = Width of the web of a beam A
bwo A = Web thickness of wall A
C: A = Empirical factor for the calculation of predominant period in the earthquake A



direction A
D; A = Torsion amplification factor at i’th storey A
D, A = Diameter of confined core in a circular column A
d A = Effective depth of section A
dy. A = Longitudinal bar diameter A
dpw A = Diameter of hoop A
diy A = Fictitious displacements at i’th storey used in Rayleigh quotient A
di A = Reduced storey displacement of the j’th vertical element at i’th storey A
E, A =Modulus of Elasticity of steel A
E.mn A =Mean value of Modulus of Elasticity of concrete in accordance with EN 1992-1- A
1:2004 A
Eq A Design value of an action effect A
Eqi A = Design value of the action effect on the zone or element i in the seismic design A
situation A
Eg A = Action effect due to seismic load A
Era A Design value of an action effect on the foundation A
Ec A = Action effect due to dead load A
Erg A = Action effect from the analysis of the design seismic action A
Erg A = Action effect due to the non-seismic actions included in the combination of A
actions for the seismic design situation A
Eqa = Action effect due to live load A
e A = Length of seismic link A
Fs A =Fictitious forces at i’th storey used in Rayleigh quotient A
Fi A =Equivalent seismic load acting at i’th storey A
Fyxin A =Modal seismic load in the n’th mode acting at i’th storey in x direction A
Fyin A =Modal seismic load in the n’th mode acting at i’th storey in y direction A
Foin A Modal seismic torque in the n’th mode acting at i’th storey around the vertical axis A
passing through mass centre A
«d A = Design value of concrete compressive strength A
«« A = Exopected value of concrete compressive strength A
ok A Characteristic value of concrete compressive strength A
«m A = Mean value of concrete tensile strength A
y A =Nominal value of steel yield strength A
yda A = Design value of steel yield strength A
ve A = Expected value of steel yield strength A
yaf A = Design yield strength of steel in the flange A
yav A = Design value of yield strength of the vertical web reinforcement A
yaw A = Design strength of web reinforcement A
s« A = Characteristic value of steel yield strength A
yia A = Design value of yield strength of longitudinal reinforcement A
ywd A = Design value of yield strength of transverse reinforcement A
< A =Equivalent seismic load acting at the mass centre of nonstructural element A
Gi A =Total dead load at i’th storey of building A
g A = Acceleration of gravity 9.81 m/s* A
H; A =Total height of building measured from the top foundation level A
(In buildings with rigid peripheral basement walls, total height of building A
measured from the top of the ground floor level) [m] A
Hy A = Total height of building measured from the top foundation level A
(In buildings with rigid peripheral basement walls, total height of building A
measured from the top of the ground floor level) [m] A



A

H,, A =Total wall height measured from top foundation level or ground floor level A
h A = Cross sectional depth A
hy A = Depth of composite beam A

he A = Cross sectional depth of a column in a given direction A

hy A = Flange depth A

hi = Height of 1’th storey of building [m] A

ho, A = Depth of confined core in a column (to centerline of hoops) A

hy A = Depth of beam A
I A = Building Importance Factor A

I, A =Second moment of area of the steel section part of a composite section, with A
respect to the centroid of the composite section A
I. A =Second moment of area of the concrete part of a composite section, with respect to A

the centroid of the composite section /eq equivalent second moment of area of the A
composite section A

I. A =Element nonstructural Importance Factor A

I; A = Second moment of area of the rebars in a composite section, with respect to the A
centroid of the composite section A

ke A = Effective stiffness coefficient of the nonstructural element or component. A

k. A =Rib shape efficiency factor of profiled steel sheeting A

ki A =Reduction factor of design shear resistance of connectors in accordance with EN A

1994-1-1:2004 A
L A =Beamspan A
Il; A = Column height A

lq A = Clear length of a beam or a column A
I A = Length of critical region A
lw A = Length of wall cross-section A

lwi A = Plan length of j’th structural wall or a piece of coupled wall at the first story A

Mgq A = Design bending moment obtained from analysis for the seismic design situation A

Mgqr A= Bending moment due to design seismic action A

Mgy A= Bending moment due to non-seismic actions in seismic design situation A

Mggw = Design bending moment obtained from analysis at the base of the wall for the A
seismic design situation A

M; A =1’th storey mass of building M; W;/g A

M;4 A =End moment of a beam or column for calculating capacity design shear A

My A = Nominal plastic moment of RC section A

M,, A =Modal mass of the n’th natural vibration mode A

My ra = Design value of plastic moment resistance A

M, ra,a = Design value of plastic moment resistance at end A of a member A

M, ra = Design value of plastic moment resistance at end B of a member A

M ra,c = Design value of plastic moment resistance of column, taken as lower bound and A
computed taking into account the concrete component of the section and only the A
steel components of the section classified as ductile A

Mgy A= Design moment resistance of a beam at end i A

Mg.; A= Design moment resistance of a column at end 1 A

Mgrgq A = Design bending moment resistance A

Mgrqw = Design bending moment resistance at the base of the wall A

My, A = Effective participating mass of the n’th natural vibration mode of building in A
the x earthquake direction considered A

M,, A = Effective participating mass of the n’th natural vibration mode of building in A



the y earthquake direction considered A

M; A =Total mass of building (M, W,/g A

My rap = Upper bound plastic resistance of beam, computed taking into account the concrete A
component of the section and all the steel components in the section, including A
those not classified as ductile A

My A = Bending moment corresponding to the state of first-yield in RC section A

me A Nonstructural element mass A

N A =Total number of stories of building from the foundation level A
(In buildings with rigid peripheral basement walls, total number of stories from the A
ground floor level) A

Neq A = Design axial force obtained from analysis for the seismic design situation A

Neqr A= Axial force due to design seismic action A

Neqg A= Axial force due to non-seismic actions in seismic design situation A

Npira A= Design value of yield resistance in tension of the gross cross-section of a member in A
accordance with EN 1993-1-1:2004 A

n A = Steel-to-concrete modular ratio for short term actions A

ny A = Live Load Mass Reduction Factor A

ny A = Live Load Participation Factor A

Ocx A = Response quantity obtained by modal combination in Response Spectrum A
Method for an earthquake in x direction A

Ocy A Response quantity obtained by modal combination in Response Spectrum A
Method for an earthquake in y direction A

Op A = Design response quantity due to seismic action A

Oi A =Total live load at i’th storey of building A

Osx A = Scaled response quantity obtained by modal combination in Response Spectrum A
Method for an earthquake in x direction A

Osy A = Scaled response quantity obtained by modal combination in Response Spectrum A
Method for an earthquake in y direction A

Ox A Response quantity obtained in Equivalent Seismic Load Method for an earthquake A
in x direction A

Oya = Response quantity obtained in Equivalent Seismic Load Method for an earthquake A
in y direction A

g A = Behaviour Factor A

g A = Behaviour Factor for nonstructural element or component A

qr T A= Seismic Load Reduction Factor A

Ry A Design resistance of an element; resistance of connection in accordance with EN A
1993-1-1:2004 A

R4 A Design resistance of the zone or element 7 f

Ry, A = Plastic resistance of connected dissipative member based on design yield strength A
of material as defined in EN 1993-1-1:2004 A

Sfe T) = Elastic spectral acceleration [m/s*] A

Sfr T) # Design (reduced) spectral acceleration [m /s*] A

Ssp A = Short period (0.2 second) elastic spectral acceleration [m /s*] A

Sip A = 1.0 second elastic spectral acceleration [m /sz] A

s A = Spacing of transverse reinforcement [mm] A

T A = Natural period of vibration [s] A

Ty A = Transition period of response spectrum to long-period range [s] A

T, A = Response spectrum short corner period [s] A

Ts A = Response spectrum long corner period [s] A

T: A = Natural period of predominant mode (first mode) [s] A



A

T, A = Natural period of n’th mode [s] A

tr A =Flange thickness of a seismic link A

tw A = Web thickness of a seismic link A

b A = Base shear in the earthquake direction considered A

Vex A = Base shear in x earthquake direction A

Vocx A = Base shear obtained by modal combination in x earthquake direction A

Vvy A = Base shear in x earthquake direction A

Vocy A = Base shear obtained by modal combination in y earthquake direction A

Veaa = Shear force obtained from analysis for the seismic design situation A

Vea A = Design shear force determined in accordance with capacity design rule A

Vear A= Shear force due to design seismic action A

Vea.c A= Shear force due to non-seismic actions in seismic design situation A

Veam A= Shear force due to application of plastic moment resistances at the two A
ends A

Vi A =1’th storey seismic shear in the earthquake direction considered A

Vie A = Sum of seismic shear forces of all columns at the i’th storey in the earthquake A
direction considered A

Vis A = Sum of seismic shear forces in the earthquake direction considered at the i’th storey A
columns where strong column — weak beam condition is satisfied at both bottom A
and top joints A

Voira A= Design value of shear resistance of a member in accordance with EN 1993-1-1: A
2004 A

Vwb.rd A = Shear buckling resistance of the web panel A

Vap,Ed o = Design shear force in web panel due to design seismic action effects A

Vap,rd o = Shear resistance of the web panel in accordance with EN 1993- 1-8:2004, 6.2.4.1 A

Wi A Seismic weight of i’th storey of building A

Wy A Total seismic weight of building corresponding to total mass, M; A

o A = Confinement effectiveness factor; ratio of the smaller bending moments Mgqa at A
one end of the link in the seismic design situation, to the greater bending moments A
Mpq g at the end where the plastic hinge develops, both moments being taken as A
absolute values. A

oag A = Coefficient used for determining the gap size of a seismic joint A

o; A =Ratio of Vi;/ Vi, calculated for any i’th storey A

Aji A =Reduced storey drift of the j’th vertical element at i’th storey A

A; oy = Average reduced storey drift of the i’th storey A

0ii A = Effective storey drift of the j’th vertical element at i’th storey A

di max = Maximum effective storey drift of the 1’th storey A

AFN A = Additional equivalent seismic load acting on the N’th storey top) of building A

€ A = Shear amplification factor of wall A

€s A =Total strain of steel at Ultimate Limit State A

g A = Upper limit (capacity of concrete compressive strain in the extreme fiber inside the A
confinement reinforcement f

€qz A = Ultimate compressive strain of unconfined concrete A

es A = Upper limit (capacity of strain in steel reinforcement A

€yd A = Design value of steel strain at yield A

Ni A Torsional Irregularity Factor defined at i’th storey of building A

Nei A = Strength Irregularity Factor defined at i’th storey of building A

Nk A = Stiffness Irregularity Factor defined at i’th storey of building A

@yin A = In buildings with floors modelled as rigid diaphragms, horizontal component A
of n’th mode shape in the x direction at 1’th storey of building A



A

®yi, A = In buildings with floors modelled as rigid diaphragms, horizontal component A
of n’th mode shape in the y direction at i’th storey of building A
@y, A = In buildings with floors modelled as rigid diaphragms, rotational component A
of n’th mode shape around the vertical axis at i’th storey of building A
¢y A = Yield curvature corresponding to nominal plastic moment f
¢'y A = Curvature corresponding to first-yield A
I'sn A = Participation Factor of n’th mode for x direction earthquake A
Yov A = Material overstrength factor A
vpb A = Factor applied to design value Ny rq 0f yield resistance in tension of the A
compression brace in a V bracing A
L A = Non-dimensional slenderness of a member as defined in EN 1993-1-1:2004 A
e A = Curvature ductility factor A
vg A = Axial force in seismic design situation, normalised toAf _,,
A =Value of (Rqi/ E4i < g/l of the element 7 of the structure which has the highest A
influence on the effect £runder consideration A
w A =Mechanical ratio of vertical web reinforcement A,=py aav/ A A
wd A =Mechanical volumetric ratio of confining reinforcement A

p A =Tension reinforcement ratio A

pA Compression reinforcement ratio A

Pmax A = Maximum tension reinforcement ratio allowed in the critical region of a primary A
beam A

Pmin A = Minimum tension reinforcement ratio to be provided along a beam A

0; A = Second Order Effect Indicator defined at i’th storey of building A

0, A = Rotation capacity of the plastic hinge region A

> My, = Sum of design values of moment resistances of beams framing in a joint in the A
direction considered A

> My, = Sum of design values of moment resistances of columns framing in a joint in the A
direction considered A

A

1.1.3. Reference Standards A

A

1.1.3.1 — The Aollowing Atandards Arre Acceptable Aeference Atandards Ao Ae Atilized An A

combination with this standard: A

EN 1990: Eurocode — Basis of structural design A

EN 1992-1-1: Eurocode 2 — Design of concrete structures — Part 1-1: General - Common A
rules for building and civil engineering structures A

EN 1993-1-1: Eurocode 3 — Design of steel structures — Part 1-1: General - General rules A

EN 1993-1-1: Eurocode 4 — Design of composite steel and concrete structures — Part 1-1: A
General rules and rules for buildings A

EN 1997-1: Eurocode 7 — Geotechnical design — Part 1: General rules A

EN 1998-5: Eurocode 8 — Design of structures for earthquake resistance — Part 5: A
Foundations, retaining structures and geotechnical aspects A

A

1.1.3.2 — Regarding the utilization of the above-referenced Eurocodes, National A pplication A
Documents of the United Kingdom may be applied. A



A

1.2. SEISMIC GROUND MOTION A

A
1.2.1. Earthquake levels A

A

The earthquake levels to be considered in this Code are defined in the following: A

A
1.2.1.1 — El) Earthquake Level: This earthquake level represents relatively frequent but low-A
intensity earthquake ground motions with a high probability to occur during the service life of A
buildings Avithin Ahe Acope Af Ahis ALode. A'he Arobability Af Axceedance Af AE1) Aevel A
earthquake in 50 years is 50%, which corresponds to a return period of 72 years. A

A
1.2.1.2 — (E2) Earthquake Level: This earthquake level represents the infrequent and higher A
intensity earthquake ground motions with a low probability to occur during the service life of A
buildings Avithin Ahe Acope Af Ahis Lode. A'he Arobability Af Axceedance Af AE2) Aevel A
earthquake in 50 years is 10%, which corresponds to a return period of 475 years. A

A
1.2.1.3 — (E3) Earthquake Level: This earthquake level represents the highest intensity, very A
infrequent earthquake ground motions that the buildings within the scope of this Code may be A
subjected to. The probability of exceedance of E3) level earthquake in 50 years is 2%, which A
corresponds to a return period of 2475 years. A

A

1.2.2. Representation of ground motion: Elastic Response Spectrum A

A
1.2.2.1 — Within the boundaries of Emirate of Dubai, 5% damped horizontal elastic spectral A
accelerations Aorresponding Ao Ahort Aeriod A0.2 Aecond), Asp » And A.0 Aecond Aatural A
vibration period, S|p , are given for (E1 , E2 and (E3) earthquake levels in Table 1.1 for A
local soil classes defined in Annex A. A

A
1.2.2.2 — Elastic Aesponse Apectrum Aepresenting Ahe Aorizontal Aomponent Af Aarthquake A
ground motion is defined as follows (Fig.1.1 : A

Sfe T Ac0.4 SgDA+a1).6AS‘S—DAT (Ty<T
N
Sf el ASspa (IS T <Tgy
A 5 A 1.1)
SfeaT A(D}—?A (Tf<TI<T,
Sfp T AmSI;—;TLA TL<TA
A :
Spectrum corner periods 7, and Ts are defined as: A
YZA:(;)S&A ; T o0.2Tf A 1.2)
Sspa
Transition period to long-period range shall be taken for Emirate of Dubai as 77 8 s. A
A
A
A



Table 1.1. Short period and 1.0 second elastic spectral accelerations A

Earthquake Level A
E1) A E2) A E3) A
Ssp/gA Sip/gA Ssp/2A Sip/gA Ssp/gA Sip/gA
A | 0.080A 0.032A 0.120 A] 0.053 A] 0.180 A] 0.080 A
BA | 0.100 Al 0.040 Al 0.150 Al 0.067 Al 0.225 A] 0.100 Al
CA | 0.120A] 0.068 A] 0.180 A 0.113 Al 0.270 A| 0.170 Al
DA | 0.160 Al 0.096 Al 0.240 A] 0.160 A] 0.360 Al 0.240 A

EA | 0250A] 0.140 Al 0375 Al 0.233 A] 0.563 A| 0.350 Al
Site-specific geotechnical investigation and dynamic site A

Soil A
Class

FA response analysis required (see Annex A A
A
A SEA
A A
A Ssp 4
A
A
A
A ;
A S ;
0.4S
A sP Tua A
7
A T
T, A Ts A 1.0A TLA T TA
Figure 1.1. Elastic Response Spectrum A
A

1.2.2.3 — When required, elastic acceleration spectrum may be determined through special A
investigations Ay Aonsidering Aocal Aeismic Zand Aite Aonditions. However A% Alamped A
acceleration spectrum ordinates shall in no case be less than those determined by Eq.(1.1) A
based on short-period and 1.0 second spectral accelerations given in Table 1.1. A

1.2.2.4 — Elastic response spectrum representing the vertical component of earthquake ground A
motion may be taken as half the value of the corresponding to horizontal component. A

A
1.2.3. Representation of ground motion in time domain A

A
1.2.3.1 — A minimum three or seven sets of earthquake ground motions acceleration records A
in two perpendicular horizontal directions) with the following properties shall be selected for A
the analysis to be performed in the time domain. Real acceleration records may be obtained A
from the following data banks: A

Cosmos Virtual Data Center http://db.cosmos-eq.org/ A
Peer Strong Motion Database http://peer.berkeley.edu/smcat/ A




A

European Strong- Motion Database http://www.isesd.cv.ic.ac.uk/ESD/frameset.htm A

Japan K-NET NIED http://www.k-net.bosai.go.jp/ A

A

1.2.3.2 A An Ahe Aases Avhere Aufficient Aumber Af Acceleration Aecords Aannot Ae Aound, A
artificial earthquake ground motions generated as compatible with the earthquake simulations A
or the elastic response spectrum may be used. The same acceleration record accelerogram A
shall not be used for both directions. The ground motion simulations shall be based on a A
physical model considering the fault mechanism, rupture characteristics and the geological A
structure of the medium between the earthquake source and recording station. A

A
1.2.3.3 — The average of 5% damped spectral amplitudes calculated at zero period from each A
set of earthquake ground motion shall not be less than zero-period spectral amplitude of the A
elastic response spectrum 0.4 Ssp. A

A

1.2.3.4 — The duration between the two points where acceleration amplitude first and last A
exceed +0.05g shall not be shorter than 5 times the dominant natural vibration period of the A
building nor 15 seconds for each earthquake ground motion record. A

A

1.2.3.5 — The resultant spectrum of an earthquake ground motion set shall be obtained through A
square-root-of-sum-of-squares of 5% damped spectra of the two directions. The amplitudes of A
earthquake Around Anotions Ahall Ae Acaled According Ao A Aule Auch Ahat Ahe Average Af A
amplitudes Af Ahe Aesultant Apectra Af All Aecords detween Ahe Aeriods A.27 Aand A.2T

T Dominant natural vibration period of the building shall not be less than 1.3 times the A
amplitudes of the elastic response spectrum along the same period range. The scaling of both A
components shall be made with the same factors. A

A

1.2.3.6 — Regarding the seismic design of tall buildings according to Chapter 5, if needed, A
parameters related to vertical component of the earthquake ground motion may be specified, A
subject to the approval of the Independent Review Board where applicable. A
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A

1.3. SEISMIC PERFORMANCE OBJECTIVES A

A

1.3.1. Classification of buildings A

A

For the purpose of identifying seismic performance objectives as well as analysis and design A
requirements, Auildings Ahall Ae Alassified Anto Awo Aroups, Aamely Aow- Ao Anedium-rise A
buildings and tall buildings. A

A

1.3.1.1 — Tall buildings are those of minimum 60 meter height measured from the lowest A
ground level, excluding basement stories completely underground and surrounded with high-A
stiffness peripheral walls all around. A

A

1.3.1.2 — Buildings other than those described in 1.3.1.1 are defined as low- to medium-rise A
buildings. A

A

1.3.2. Performance levels and ranges A

A

Performance levels of low- to medium-rise and/or tall buildings, whereever applicable, are A
defined below with respect to estimated damage levels in earthquakes. A

A

1.3.2.1 — Immediate Occupancy — Minimum Damage 10 — MD Per ormance Level describes A
a Aerformance Aondition Auch Ahat Ao Atructural Ar Aonstructural Aamage Avould Accur An A
buildings and in their elements under the effect of an earthquake or, if any, the damage would A
be Aery Aimited. An Ahis Aondition, Ahe Auilding Aan Ae Accupied Aninterruptedly And Ahe A
problems, if any, can be fixed in a few days. f

A

1.3.2.2 — Lie Saety — Controlled Damage LS — CD) Per ormance Level describes A A
performance condition where limited and repairable structural and nonstructural damage is A
permitted An Auildings And An Aheir Alements Ainder Ahe Affect Af An Aarthquake. An Ahis A
condition, short term a few weeks or months problems related to occupancy of the building A
may be expected. A

A

1.3.2.3 — Collapse Prevention — Extensive Damage CP — ED Per ormance Level describes a A
performance condition where extensive damage may occur in buildings and in their elements A
under the effect of an earthquake prior to the collapse of the building. In this condition, long A
term problems Aelated to Accupancy Af the buildings Anay Accur Ar the Accupancy Af the A
buildings may be terminated. A

A

1.3.2.4 — The Aegions An Aetween Ahe Above-defined Aerformance Aevels Are Adentified As A
per ormance ranges as indicated in a strength — typical deformation curve Fig. 1.2). The A
region below 10 — MD) Performance Level is defined as Immediate Occupancy / Minimum f
Damage Per ormance Range, the region in between 10 — MD) Performance Level and LS — A
CD) Performance Level is defined as Li e Sa ety / Controlled Damage Per ormance Range, A
the region in between LS — CD) Performance Level and CP — ED) Performance Level is A
defined as Collapse Prevention / Extensive Damage Per ormance Range and the region above A
the (CP — ED) Performance Level is defined as Collapse Range. A

> > >

>
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A

A
A
A
Strength Al LS-CD A CP-ED A
A 10-MD A ——
A ! I
1
1
A i ! i
A i ! :
1
A | ! |
1 1
A : ! :
A Immediate ;! SLfifc N , l)Collap'seA/ !
Occupancy/ A afety, 1 Prevention i
A Minimurg Da?nage IA Controlled Damage A | Ext. Damage Typlcal. A
Performance A | Performance A Performance A Collapse . Deformation A
A Range A | Range A ! Range A | Range A
: : : >
A >
Figure 1.2. Performance levels and ranges A
A

1.3.3. Minimum performance objective for low- to medium-rise buildings A

A

1.3.3.1 A Minimum Aerformance Abjective Aor Aow- Ao Anedium-rise Aduildings Avith A&n A
Importance Factor of / 1.0 according to Table 2.1 is identified as Li e Sa ety / Controlled f
Damage Per ormance Objective under (E2 level earthquake specified in 1.2. Without any A
analytical verification, it is implicitly assumed that a building designed to this performance A
objective would automatically satisfy Immediate Occupancy /Minimum Damage Per ormance f
Objective under E1) level earthquake as well as Collapse Prevention / Extensive Damage f
Per ormance Objective under (E3) level earthquake. A

A

1.3.3.2 A Minimum Aerformance Abjective Aor Aow- Ao Anedium-rise Aduildings Avith A&n A
Importance Factor of / 1.5 according to Table 2.1 is identified as Immediate Occupancy / f
Minimum Damage Per ormance Objective under AE2) Aevel Aarthquake Apecified An A.2. A
Without any analytical verification, it is implicitly assumed that a building designed to this A
performance Aobjective Awould Aautomatically Asatisfy ALi e fSa ety f/ f Controlled f Damage f
Per ormance Objective under (E3) earthquake level earthquake. A

A

1.3.3.3 A AMinimum Aerformance Abjective Kor Aow- Ao Anedium-rise Aduildings Avith A&n A
Importance Factor between /= 1.0 and / 1.5 according to Table 2.1 is identified as in A
between Immediate Occupancy / Minimum Damage Per ormance Objective and Li e Sa ety / f
Controlled Damage Per ormance Objective under (E2) level earthquake specified in 1.2. A

A

1.3.3.4 — Upon the requirement of the Owner or the relevant State Authority, the above-given A
minimum performance objectives for special low- to medium-rise buildings may be enhanced A
by assigning higher importance factors within the limits of Table 2.1. A

A

1.3.4. Multiple minimum performance objectives for tall buildings A

A

Minimum performance objectives identified for tall buildings are given below Table 1.2 A
depending upon the earthquake levels defined in 1.2: A

A

1.3.4.1 — The multiple performance objectives of tall buildings in Normal Occupancy Class A
residence, hotel, office building, etc.) are identified as Immediate Occupancy / Minimum f
Damage fPer ormance fObjective funder AE1 Aevel Aarthquake, ALi e fSa ety f/ fControlled



A

Damage Per ormance Objective under AE2) Aevel Aarthquake, And Aollapse Rrevention A A
Extensive Damage Per ormance Objective under (E3) level earthquake. A
A
1.3.4.2 — The performance objectives of tall buildings in Special Occupancy Class health, A
education, Aublic Administration Auildings, &tc.) Are Adentified As Ammediate Occupancy /f
Minimum Damage Per ormance Objective under AE2) Aevel Aarthquake, And Ai e Sa ety /f
Controlled Damage Per ormance Objective under (E3) level earthquake. A
A
1.3.4.3 — AJpon Ahe Aequirement Af Ahe wner Ar Ahe Aelevant Atate A uthority, Aigher A
performance objectives, such as those given in 13.4.2, may be identified for tall buildings in A
Normal Occupancy Class (residence, hotel, office building, etc. instead of those defined in A
1.34.1. A
A

Tablo 1.2. Minimum performance objectives identified for tall buildings A

under various earthquake levels A

- E1) A E2) A E3) A
Bu11d1ngCl(;::lX)ancy A Earthquake A Earthquake A| Earthquake A
Level A Level A Level A

Normal occupancy class: A
Residence, hotel, office A 1I0/MD A LS/CDA CP/ED A
building, etc. A
Special occupancy class: A
Health, education, public A —A I0/MD A LS/CDA

admin. buildings, etc. A
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A

1.4. GENERAL GUIDELINES FOR ARRANGEMENT OF BUILDING A
STRUCTURAL SYSTEMS A

A

1.4.1. Structural simplicity A

A

1.4.1.1 — Structural simplicity is characterised by the existence of clear and direct paths for A

the transmission of the seismic forces. A

A

1.4.1.2 — Modeling, analysis, dimensioning, detailing and construction of simple structures A

are subject to much less uncertainty and thus the prediction of their seismic behaviour is much A

more reliable. A

A

1.4.2. Uniformity, symmetry and redundancy A

A

1.4.2.1 — Uniformity in plan is characterised by an even distribution of the structural elements A

which allows direct transmission of the inertia forces created in the distributed masses of the A

building. Af Aecessary, Ainiformity Anay Ae Aealised Ay Aubdividing Ahe Antire Auilding Ay A

seismic joints into dynamically independent Anits, provided that these joints are designed A

against pounding of the individual units in accordance with 2.7.2. A

A

1.4.2.2 — Uniformity in the development of the structure along the height of the building is A

also essential, as it tends to eliminate the occurrence of sensitive zones where high stress or A

ductility demands might concentrate. A

A

1.4.2.3 — A similarity between the distribution of masses and the distribution of resistance and A

stiffness eliminates large eccentricities between mass and stiftness. A

A

1.4.2.4 — If the building configuration is symmetrical or quasi-symmetrical, a symmetrical A

layout of structural elements, which should be well-distributed in-plan, is appropriate for the A

achievement of uniformity. A

A

1.4.2.5 — The use of evenly distributed structural elements increases redundancy and allows a A

more favourable redistribution of action effects and widespread energy dissipation across the A

entire structure. A

A

1.4.3. Adequate resistance and stiffness A

A

1.4.3.1 — Horizontal seismic motion is a bi-directional phenomenon and thus the building A

structure shall be able to resist horizontal actions in any direction. In this respect, structural A

elements Ahould Ae Arranged An An Arthogonal An-plan Atructural Aattern, Ansuring Aimilar A

resistance and stiffness characteristics in both main directions. A

A

1.4.3.2 — In addition to lateral resistance and stiffness, building structures should possess A

adequate Aorsional Aesistance And Atiffness An Arder Ao Aimit Ahe Alevelopment Af Aorsional A

motions which tend to stress the different structural elements in a non-uniform way. In this A

respect, arrangements in which the main elements resisting the seismic action are distributed A

close to the periphery of the building present clear advantages. A

> > >

>
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A

1.4.4. Diaphragm action A

A

1.4.4.1 — In buildings, floors (including the roof play a very important role in the overall A
seismic behaviour of the structure. They act as horizontal diaphragms that collect and transmit A
the inertia forces to the vertical structural systems and ensure that those systems act together A
in resisting the horizontal seismic action. The action of floors as diaphragms is especially A
relevant in cases of complex and non-uniform layouts of the vertical structural systems, or A
where systems with different horizontal deformability characteristics are used together (e.g. in A
dual or mixed systems). A

A

1.4.4.2 — Floor systems and the roof should be provided with in-plane stiffness and resistance A
and with Affective Aonnection to the vertical structural systems. Particular Aare should be A
taken in cases of non-compact or very elongated in-plan shapes and in cases of large floor A
openings, especially if the latter are located in the vicinity of the main vertical structural A
elements, Ahus Aindering Auch Affective Aonnection Adetween Ahe Avertical And Aorizontal A
structure. A

A

1.4.4.3 A Aiaphragms Ahould Aave Aufficient An-plane Atiffness Aor Ahe Adistribution Aof A
horizontal inertia forces to the vertical structural systems in accordance with the assumptions A
of Ahe Analysis, Aarticularly Avhen Ahere Are Aignificant Ahanges An Atiffness Ar Affsets Af A
vertical elements above and below the diaphragm. A

A

1.4.4.4 — The diaphragm may be taken as being rigid, if, when it is modeled with its actual in-A
plane flexibility, its horizontal displacements nowhere exceed those resulting from the rigid A
diaphragm Aassumption Aby Amore Ahan Al0% Aof Athe Acorresponding Aabsolute Ahorizontal A
displacements under seismic loads. A

A

1.4.5. Adequate foundation A

A

1.4.5.1 — With regard to the seismic action, the design and construction of the foundations and A
of the connection to the superstructure shall ensure that the whole building is subjected to a A
uniform seismic excitation. A

A

1.4.5.2 — For buildings with individual foundation elements footings or piles), the use of a A
foundation slab or tie-beams between these elements in both main directions is recommended. A

bl i i g g g



A

1.5. REGULARITY REQUIREMENTS A

A

Regularity requirements of building structural systems are indirectly specified through the A
definition of irregular buildings. A

A

1.5.1. Definition of Irregular Buildings A

A

Regarding the definition of irregular buildings, types of irregularities in plan and in elevation A
are given in Table 1.3 and relevant conditions are given in 1.5.2. A

A

1.5.2. Conditions for Irregular Buildings A

A

Conditions related to irregularities defined in Table 1.3 are given below: A

A

1.5.2.1 — Irregularity types A1 and B2 govern the selection of the method of seismic analysis A
as specified in 2.2.2.1. A

A

1.5.2.2 — In buildings with irregularity types A2 and A3, it shall be verified by calculation that A
the floor systems are capable of safe transfer of seismic loads between vertical structural A
elements. A

A

1.5.2.3 — In buildings with irregularity type B1, in the range 0.60 < 1M min < 0.80, Behaviour f
Factor, given in Chapter 3 or Chapter 4, as appropriate, shall be multiplied by 1.25 M¢i mina
which shall be applicable to the entire building in both earthquake directions. In no case, A
however, 1 < 0.60 shall be permitted. Otherwise strength and stiffness of the weak storey A
shall be increased and the seismic analysis shall be repeated. A

A

1.5.2.4 — Conditions related to buildings with irregularities of type B3 are given below: A

a) With the exception of paragraph b below, all internal force components induced by A
seismic loads shall be increased by 50% for beams and columns supporting discontinuous A
vertical elements. A

b Structural walls shall in no case be permitted in their own plane to rest on the beam span A
or on slabs at any storey of the building. A

> > > > > > > > > >
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Table 1.3 — Irregular Buildings A

-

A

—IRREGULARITIES IN PLAN A Related Items |

1 — Torsional Irregularity : A A
The case where Torsional Irregularity Factor npi, which is defined A A
for any of the two orthogonal earthquake directions as the ratio of A A
the maximum storey drift at any storey to the average storey drift at A 1.5.2.1 A
the same storey in the same direction, is greater than 1.2. A A
[nti = (A1 max / (Al avg = 12] A
Storey dri ts shall be calculated in accordance with 2.3, by f
considering the ef ects o+ %5 accidental eccentricities. A

2 — Floor Discontinuities : A A
In any floor; A A
I - The case where the total area of the openings including those of A ﬁi
stairs and elevator shafts exceeds 1/3 of the gross floor area, A 1522 A
IT — The cases where local floor openings make it difficult the safe A h A
transfer of seismic loads to vertical structural elements, A
III — The cases of abrupt reductions in the in-plane stiffness and A
strength of floors. A

3 — Projections in Plan : A
The cases where projections beyond the re-entrant corners in both of A 1522 A
the two principal directions in plan exceed the total plan dimensions A o
of the building in the respective directions by more than 20%. A
B — IRREGULARITIES IN ELEVATION A Related Items A
B1 — Interstorey Strength Irregularity Weak Storey) : A A
In reinforced concrete buildings, the case where in each of the A A
orthogonal earthquake directions, Strength Irregularity Factor nei , A A
which is defined as the ratio of the shear strength of any storey to A A
the shear strength of the storey immediately above, is less than 0.80. A 1523 A
Mei=Vi/ Vi1 <0.80] A
Shear strength o a storey is the sum o design shear strengths o
vertical elements according to Chapter 3 or Chapter 4, as f
appropriate. [
B2 — Interstorey Stiffness Irregularity So t Storey) : A A
The case where in each of the two orthogonal earthquake directions, A A
Stif ness Irregularity Factor My , which is defined as the ratio of the A j:*
average storey drift at any storey to the average storey drift at the A 1.5.2.1 A
storey immediately above is greater than 1.5. A A
Mk = (AVA; ot/ (Airi/hisr o> 1.5 A
Storey dri ts shall be calculated in accordance with 2.3, by f
considering the ef ects o+ %5 accidental eccentricities. A
B3 - Discontinuity of Vertical Structural Elements : A A
The cases where columns are removed at some stories and supported A A
by beams or columns underneath, or structural walls of upper stories A 1524 A

A

are supported by columns or beams underneath. A

> >
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A

1.6. PRIMARY AND SECONDARY SEISMIC MEMBERS A
A
1.6.1. Primary members A
A

11 structural members not designated as being secondary seismic members according to 1.6.2 A
are taken as being primary seismic members. They shall be taken as being part of the lateral A
force resisting system, and designed and detailed for earthquake resistance in accordance with A
the rules of Chapters 3,4 and 5. A
A
1.6.2. Secondary members A
A
1.6.2.1 — Certain Atructural Anembers Ae.g. Aeams And/or Aolumns) Anay Ae Alesignated As A
secondary seismic members or elements), not forming part of the seismic action resisting A
system of the building. The strength and stiffness of these elements against seismic actions A
shall be neglected. They do not need to conform to the requirements of Chapters 3,4 and 5. A
Nonetheless these members and their connections shall be designed and detailed to maintain A
support Aof Agravity Aoading Avhen Aubjected Ao Ahe Adisplacements Aaused Ay Ahe Anost A
unfavourable seismic design condition. A llowance of second-order effects shall be made in A
the design of these members. A
A
1.6.2.2 — Total contribution to lateral stiffness of all secondary seismic members shall not A
exceed 15% of that of all primary seismic members. A
A
1.6.2.3 — The designation of some structural elements as secondary seismic members is not A
allowed to change the classification of the structure from non-regular to regular as described A
in1.5. A
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CHAPTER 2 A

SEISMIC ANALYSIS REQUIREMENTS OF BUILDINGS A
A
2.1. PARAMETERS OF DESIGN RESPONSE SPECTRUM A
A
2.1.1. Importance Factors A
A
Depending on purpose of occupancy of building, Building Importance Factors (1) are defined A
as given in Table 2.1. A

A
Table 2.1 — Building Importance Factors /) A
Purpose of Occupancy of Building A A
a) Buildings required to be utilised immediately after the earthquake A
Hospitals, dispensaries, health wards, fire fighting buildings and A
facilities, PTT and other telecommunication facilities, transportation A
stations and terminals, power generation and distribution facilities, A
o0 . . o 1.5A
governorate, county and municipality administration buildings, first A| A
aid and emergency planning stations) A
b) Buildings containing or storing toxic, explosive and/or flammable A
materials, etc. A
a) Schools, other educational buildings and facilities, dormitories A A
and hostels, military barracks, prisons, etc. A 1.4 A
b) Museums A A
Sport facilities, cinema, theatre and concert halls, etc. A 12A
Buildings other than above-defined buildings. (Residential and A 10 A
office buildings, hotels, building-like industrial structures, etc. A ’
A
A
2.1.2. Seismic Load Reduction Factors A
A

2.1.2.1 — Elastic seismic loads determined in terms of spectral accelerations defined in 1.2 A
shall be divided to below-defined Seismic Load Reduction Factor to account for the ductile A
behaviour Af Ahe Atructural Aystem Aduring Aearthquake. Aeriod-dependent ASeismic fLoad f
Reduction Factor, &z T , shall be determined by Eqs.(2.1) in terms of Behaviour Factor, q, A

representing the ductility capacity of the structure and the Building Importance Factor, I, f
indicating the performance objective of the building. A

G T =1+ ,%ff— 1}?’&5 (O T/ T,
SA

A A 21) A
qr T):l%, (Tg<T ¢

where ¢/I) ratio shall not be taken less than unity. A

A



A

2.1.2.2 — Behaviour Factors are given in Chapter 3 for various types of reinforced concrete A
buildings, An AChapter 4 Aor Atructural Ateel Auildings And An AChapter S Aor Aomposite A
concrete-steel buildings. A

LA

2.1.3. Design Response Spectrum A

A

Reduced spectral accelerations representing the Design Response Spectrum shall be defined A
by Aividing Ahe &lastic Response Spectrum Ardinates Aiven An A.2.2 Ao Ahe Aeismic Load f
Reduction Factor givenin 2.1.2. A

A Sfral = AM 22) A
qral A

A

A



A

2.2. SEISMIC ANALYSIS A

A

2.2.1. Applicable analysis methods A

A

The analysis methods applicable for the seismic analysis of building structural systems are A
given in the following: A

A

2.2.1.1 — Equivalent Seismic Load Method described in 2.3 is the simplified single-mode A
response-spectrum analysis method, which can be used for low- to medium-rise buildings A
with conditions given in 2.2.2. A

A

2.2.1.2 — Multi-Mode Response Spectrum Analysis Method described in 2.4 is an advanced A
linear dynamic analysis method, which can be used for both low- to medium-rise as well as A
tall buildings. A

A

2.2.1.3 — Linear Response History Analysis Method described in 2.5.1 is the most advanced A
linear dynamic analysis method, which can be used for both low- to medium-rise as well as A
tall buildings. A

A

2.2.1.4 — Nonlinear Response History Analysis Method Aescribed An 2.5.2 is Ahe Anost A
advanced nonlinear dynamic analysis method, which can be used for both low- to medium-A
rise and tall buildings. A

A

2.2.2. Selection of analysis method for low- to medium-rise buildings A

A

2.2.2.1 — Equivalent Seismic Load Method can be used for structures with Hy < 40 m provided A
that type A2 torsional irregularity factor in any story does not exceed 2 1y < 2 — see Table A
1.3) type B2 irregularity does not exists with reference to 1.5. A

A

2.2.2.2 — Multi-Mode Response Spectrum Analysis Method is the acceptable analysis method A
for all low- to medium-rise buildings. A

A
2.2.3. Definition of seismic mass A
A
Total seismic mass of the building, M,, shall be determined by Eq.(2.3): A
B A5
A Mf=AL =A > W, ; W= Gf+afnf Of A 23)A
of  gfica

where live load mass reduction factor n, and live load participation factor n, shall be taken A
from Table 2.3 and Table 2.4, respectively. A

* Table 2.3 — Live load mass reduction factor n, A
Type of occupancy A nf
Storeys with correlated occupancies A | 0.80 A
Storeys with independent occupancies A 0.30 A
A
A



A

2.2.4. Consideration of vertical component of earthquake A

A

2.2.4.1 — Vertical component of the seismic action, as defined in 1.2.2.4, shall be taken into A
account for the cases listed below: A

a) Horizontal or nearly horizontal structural members spanning 20 m or more; A
b Horizontal or nearly horizontal cantilever components longer than 5 m; A
¢) Horizontal or nearly horizontal pre-stressed components; A

d Beams supporting columns. A

A

2.2.4.2 — The analysis for determining the effects of the vertical component of the seismic A
action may be based on a partial model of the structure, which includes the elements on which A
the vertical component is considered to act e.g. those listed in 2.2.4.1) and takes into account A
the stiffness of the adjacent elements. A

A

2.2.4.3 — The Affects Af Ahe Aertical Aomponent Aeed Ae Aaken Anto Account Anly Aor Ahe A
elements Ainder Aonsideration Ae.g. Ahose Aisted An 2.2.4.1 Aand Aheir Alirectly Associated A
supporting elements or substructures. A

> > > > > > > > > > > )
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A

2.3. EQUIVALENT SEISMIC LOAD METHOD A

A

2.3.1. Displacement Components and Application Points of Seismic Loads A

A

2.3.1.1 A- AWhere Afloors /Zact Aas Aigid fhorizontal Adiaphragms, Awo Aateral Adisplacement A
components and the rotation around the vertical axis shall be taken into account at each floor A
as Andependent Atatic Alisplacement Aomponents. A t &ach Aloor, &quivalent Aeismic Aoads A
determined in accordance with 2.3.3 shall be applied to the floor mass centre as well as to the A
points defined by shifting it +5% and —5% of the floor length in the perpendicular direction to A
the earthquake direction considered in order to account for the accidental eccentricity ef ects. A
A

2.3.1.2 — Where Aloors Alo Aot Act As Aigid Aorizontal Aliaphragms, Aufficient Aumber Af A
independent static displacement components shall be considered to account for the in-plane A
deformation of floors. A

A

2.3.2. Base Shear A

A

Total equivalent seismic load, i.c., the base shear, V} , in the earthquake direction considered A
shall be calculated by Eq.(2.4): A

A Voa= M Sfw TINRAMN ML Sspd A 24 A

where design spectral acceleration Sfr 77) and elastic short period spectral acceleration Ssp A
correspond Ao AE2) Aevel Aearthquake. APredominant Anatural Aperiod An Ahe Adirection Aof A
earthquake, 7 , shall be calculated in accordance with 2.3.4. A

A

2.3.3. Storey Seismic Loads A

A

2.3.3.1 — Total equivalent seismic load determined by Eq.(2.4) is expressed by Eq. 2.5) as A
the sum of seismic loads acting at storey levels. A

NA

A V, = AFy+ X, A 25)A
i=1A

2.3.3.2 — The additional equivalent seismic load, AFx , acting at the N’th storey roof) of the A

building shall be determined by Eq.(2.6). A

A AFy =0.0075 NV, A 2.6) A

Excluding AFy , remaining part of the total equivalent seismic load shall be distributed to A
stories of the building including N’th storey) in accordance with Eq.(2.7). A

A F, =(V5—AFJ@A# A 2.7) A
ZCWk HkA

k=1A

2.3.3.3 — In the case where torsional irregularity defined in Table 1.3 exists at any i’th storey A
such that the condition 1.2 < n < 2.0 is satisfied, £5% accidental eccentricity applied to this A
floor According to 2.3.1.1 shall be Amplified by Multiplying Avith Aoefficient £; given by A
Eq.(2.8) for each earthquake direction. A
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2.3.3.4 — In buildings with very stiff reinforced concrete peripheral walls at their basements, A
equivalent seismic loads acting on stiff basement stories and those acting on relatively flexible A
upper stories shall be calculated separately as given in a) and b below. Such loads shall be A
combined for the analysis of the complete structural system. A

a) In determining the base shear and equivalent storey seismic loads acting on relatively A
flexible upper stories, Clauses 2.3.2 and 2.3.3 shall be applied with seismic masses of upper f
stories only taken into account. Foundation top level considered in the relevant definitions and A
expressions Ahall Ade Aeplaced Ay Ahe Aground Aloor Aevel. Alictitious Aoads Aised Aor Ahe A
calculation of the first natural vibration period in accordance with 2.3.4.2 shall also be based A
on seismic masses of upper stories only. Appropriate behaviour factor ¢ shall be selected from A
Chapter 3 or Chapter 4, as appropriate, based on the structural type of the upper stories f
only. A

b In calculating equivalent seismic loads acting on the stiff basement stories, seismic masses A
of kasements only Ahall Ae Aaken Anto Account. Aquivalent Aeismic Aoads Acting An Aach A
basement Atorey Ahall Ae Aalculated Avith Alastic Apectral Acceleration Aof X.4S5ps Ao Ae A
multiplied directly with the respective storey mass, and the resulting elastic loads shall not be A
reduced i.e,gr=1). A

¢) An Ahe Analysis Af Ahe Aomplete Atructural Aystem Ainder Ahe Aombined Action Af Ahe A
equivalent seismic loads as defined in a) and b above, interaction with the soil surrounding A
basement stories may be considered with an appropriate soil modeling. A

d In-plane strength of ground floor system, which is surrounded by very stiff basement A
walls and located in the transition zone with the upper stories, shall be checked for internal A
forces obtained from the analysis according to ¢) above. A

2.3.4. Predominant period A

A

2.3.4.1 — Predominant natural vibration period of the building in the earthquake direction, 77, a
may be approximately estimated by the following expression: A

A T, =CHY"A 2.9) A

Cy may be taken As 0.085 for Anoment Aesistant Ateel frames, 0.075 for Anoment Aesistant A
concrete frames / eccentrically braced steel frames and 0.050 for all other structures. For A
structures with concrete structural walls C; may be calculated by Eq.(2.10). A

.075.
A C= IQ_ A 2.10) A
IR

where A, is calculated from Eq.(2.11). A
A A =X [4; 02+ 1 /Hy 1A 211) A

JjA

with the condition that /;/ H{<OA. A

2.3.4.2 — Predominant natural vibration period of the building in the earthquake direction, 7}, A
shall not be taken longer than the value calculated by Eq.(2.12). A
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A L=2n|&A—1p A 212) A
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A

Fictitious load F7; acting on the i’th storey may be obtained from Eq.(2.7) by substituting any A
value (&r example a unit value) in place of (Vy — AFx. A

A

2.3.5. Directional Combination A

A

2.3.5.1 — The maximum value of each response quantity due to two horizontal components of A
the earthquake may be estimated by the square root of the sum of the squared values of the A
response quantities calculated due to each horizontal component. A

A

2.3.5.2 — As an alternative to 2.3.5.1, the combination procedure given by Eq.(2.13) may be A
employed: A

Of =+0( 0300,
0f,=+030 O+ 0,

>

2.13) A
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A

2.4. MULTI-MODE RESPONSE SPECTRUM ANALYSIS METHOD A
A
In this method, maximum internal forces and displacements are determined by the statistical A
combination of maximum contributions obtained in Aufficient number of natural vibration A
modes to be considered. A
A
2.4.1. Dynamic degrees of freedom A
A
2.4.1.1 — In buildings where floors behave as rigid horizontal diaphragms, two horizontal A
degrees Af Areedom An Aerpendicular Alirections And A Aotational Alegree Af Areedom Avith A
respect to the vertical axis passing through mass centre shall be considered at each storey. At A
each floor, modal seismic loads defined for those degrees of freedom shall be applied to the A
floor mass centre as well as to the points defined by shifting it +5% and —5% of the floor A
length in the perpendicular direction to the earthquake direction considered. The latter is to A
account for the accidental eccentricity ef ects. A
A
2.4.1.2 — In buildings where torsional irregularity exists and floors do not behave as rigid A
horizontal diaphragms, sufficient number of dynamic degrees of freedom shall be considered A
to model in-plane deformation of floors. A
A
2.4.2. Modal seismic loads A
A
2.4.2.1 — In a typical n’th vibration mode considered in the analysis, modal seismic loads A
acting An Ahe A'th Atory Aevel At Ahe Anass Aentre Af Ahe Aloor Aiaphgram As Axpressed Ay A
Eqs.(2.14). A
Ffinn= Mip@ oAl @S & Tha-
A Ffion= MEDP@ L QS v Ty A 2.14) A
Foina= Mg @oin L' Qs ra T, -

where A'qy, represents the participation factor of the n’th mode under an eartquake ground A
motion in x direction. For buildings with rigid floor diaphragms I'¢y, is defined as A

— )’({‘A
A r 1L A 2.15 A
QA M ., )

in which Ly, and M| are as expressed in 2.4.3. A

A

2.4.2.2 — In buildings with very stiff reinforced concrete peripheral walls at their basements, A
unless a full modal analysis of the structural system is performed, modal seismic loads as A
defined in 2.4.2.1 acting on stiff basement stories and those acting on relatively flexible A
upper stories may be calculated separately as given in a) and b below. A

a) In calculating modal seismic loads acting on relatively flexible upper stories, the lowest f
vibration modes that Are A&ffective in the Aipper Atories may be &Aonsidered, Avhich Aan be A
achieved by taking into account the seismic masses of the upper stories only. In this case, A
appropriate behaviour factor ¢ must be selected from Chapter 3 or Chapter 4, as appropriate, A
based on the structural type of the upper stories only. A

b In determining modal seismic loads acting on stiff basement stories, the highest vibration f
modes that are effective in the basements may be considered, which can be achieved by taking A



A

into account the seismic masses of the basement stories only. In this case, resulting elastic A
modal loads should not be reduced (i.e., gg =1 . A

¢) Since vibration modes affecting the stiff basement stories and flexible upper stories are A
expected to be far apart, two separate response spectrum analyses may be performed based on A
modal seismic loads defined in a) and b above. In each of those analyses, interaction with A
the soil surrounding basement stories may be considered with an appropriate soil modeling. A
The results of such analyses may be directly superimposed. A

d In-plane strength of ground floor system, which is surrounded by very stiff basement A
walls and located in the transition zone with the upper stories, shall be checked for internal A
forces obtained from the analysis explained in ¢) above. A

A

2.4.3. Number of Vibration Modes A

A

Suf icient number of vibration modes, NS, to be taken into account in the analysis shall be A
determined to the criterion that the sum of effective participating masses calculated for each A
mode in each of the given x and y perpendicular lateral earthquake directions shall in no case A
be less than 90% of the total building mass. A

NSA NsA 128 NA
2 5= Ko—"1>0.90 Y/,
n=1A n=1A M\ i=1A
A 2.16) A
St ok=e0.90 Yar
= > .
A nzlAMﬁﬁ S

Expressions Aor Ay, AAy, And Anodal Anass A1, Ahown An Aqs.(2.16) are Aiven Aelow Aor A
buildings with rigid floor diaphragms: A

N NA
Ltz _Z:l(f{ig)xinA 5 LJ;A: Z:l(fliq)yinA

A A 217 A
Mf\= %Mgpz M@+ M, D}
A = iA”XinA i yinA 01~ 6inA
A
2.4.4. Modal Combination A
A

2.4.4.1 — Complete Quadratic Combination CQC) Rule shall be applied for the combination A

of maximum modal contributions of response quantities calculated for each vibration mode, A

such as the base shear, storey shear, internal force components, displacements and storey A

drifts. It is imperative that modal combination is applied independently for each response A

quantity. A

A

2.4.4.2 — In the calculation of cross correlation coef icients to be used in the application of the A

rule, modal damping factors shall be taken as 5% for all modes. A

A

2.4.5. Scaling of Response Quantities A

A

In the case where the base shear in the given earthquake direction, Vycx or Vicy , which is A

obtained through modal combination according to 2.4.4, is less than 85% of the corresponding A

base Ahear, A« or Ahy , obtained by Equivalent Seismic Load Method According to 2.3.2
Voc a< A.85V}, , Anll Anternal Aorce And Alisplacement Ajuantities Aletermined Ay Response A

Spectrum Analysis Method shall be amplified in accordance with Eq.(2.18). A

A 26
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VbCyA Y
In the case where Vycx or Vicy 1s not less than 85% of the corresponding base shear Vi or Vyy, A
then Osx = Ocx or Osy = Ocy shall be used in 2.4.6. A

A

2.4.6. Directional Combination A

A

Directional combination procedures given in 2.3.5 for Equivalent Seismic Load Method are A
applicable with O and Qy replaced by Qs and Qsy , respectively. A

> >



A

2.5. RESPONSE HISTORY ANALYSIS METHOD A

A
2.5.1. Linear Response History Analysis A

A
Linear response history analysis based on mode-superposition procedure may be performed A
in lieu of multi-mode response spectrum analysis described in 2.4. A

A
2.5.1.1 — The Analysis Ahall be based An A Aet Af Aarthquakes Aomprising three Ar Aeven A
earthquake records with simultaneously acting two horizontal components to be selected and A
scaled according to 1.2.3. A

A
2.5.1.2 — Sufficient number of vibration modes shall be used as described in 2.4.3. A

A
2.5.1.3 — In each analysis, linear response histories of design quantities obtained for each A
typical Anode An Ahall Ae Aeduced Ay Ahe Aorresponding Aeismic Aoad Reduction Aactor A
qraIfs given by Eqgs.(2.1) based on elastic spectrum corner period 7.

A

2.5.1.4 — If three ground motions are used in the analysis, the maxima of the results shall be A
considered for design. If at least seven ground Anotions are used, the mean values of the A
results may be considered for design. A

A

2.5.2. Nonlinear Response History Analysis A

A

Nonlinear Aesponse Aistory Analysis may Ae Aerformed Ay Alirect Antegration Af Aonlinear A
equations of motion in lieu of multi-mode response spectrum analysis described in 2.4 and A
linear response history analysis described in 2.5.1. Nonlinear analysis requirements shall be A
the same as those given in Chapter 5. A

P il i i g i g i i g g



A

2.6. SAFETY VERIFICATION A

A

2.6.1. Strength verification A

A

The following relation shall be satisfied for all structural elements including connections and A
the relevant non-structural elements: A

A E, <R, A 2.19) A

where E4 is the design value of the action effect, due to load combinations defined in 2.6.2 A
including, if necessary, second order effects defined in 2.6.3, as well as due to capacity design A
rules, as described in Chapters 3 and 4. Ry is the corresponding design resistance of the A
element, calculated in accordance with the rules specific to the material used considering the A
requirements of Chapters 3 and 4. A

A

2.6.2. Load combinations for seismic design A

A

The load combinations given in Eq.(2.20) shall be used to define the design values of action A
effects. Live load participation factor n, is given in Table 2.4. A

E. +on, Ef . ¥ E
A o+ Bhy YA 2.20) A
09E; F E;,

Table 2.4 — Live load participation factor n, A

Loading areas A nf,

Domestic, residential and office areas A 03A
Shopping and congregation areas A 0.6 A
Storage areas A 0.8 A
Traffic areas (vehicle weight < 30 kN) A 0.6 A
Traffic areas (30 kN < vehicle weight < 160 kN) A| 03 A
Roof areas A 0A

A

2.6.3. Second-Order Effects A

A

Unless a more refined analysis considering the nonlinear behaviour of structural system is A
performed, second-order effects may be taken into account in accordance with 2.6.3.1. A

2.6.3.1 — In the case where Second-Order Ef ect Indicator, 0, satisfies the condition given by A
Eq.(2.21) for the earthquake direction considered at each storey, second-order effects shall be A
evaluated in accordance with the currently enforced specifications of reinforced concrete or A
structural steel design. A

(£
A 0, A—<<ﬁ 10 A 2.21) A



A

where A; 4y, shall be determined in accordance with 2.7.1.1 as the average value of reduced A
storey drifts, A;; , calculated for 1’th storey columns and structural walls. A

A

2.6.3.2 — In the case where 0.10 < 6 < 0.20, second-order effects may approximately be taken A
into account by multiplying the relevant seismic response quantity by a factor of 1/(1 -0 . A

A

2.6.3.3 — In the case where 6 > 0.20, seismic analysis shall be repeated with sufficiently A
increased stiffness and strength of the structural system. A

> >



A

2.7. DAMAGE LIMITATION A

A

2.7.1. Limitation of story drifts A

A

2.7.1.1 — The reduced storey dri t, A;; , of any column or structural wall shall be determined A
by Eq.(2.21) as the difference of displacements between the two consecutive stories. A

where d;; and dj;_1) represent lateral displacements obtained from the analysis at the j’th A
column or structural wall at stories i and (i — 1 under reduced seismic loads. The minimum A
equivalent seismic load condition defined by Eq. 2.4) and the scaling procedure described in A
2.4.5 may not be considered in the calculation of dj; and Aji. A

2.7.1.2 — When multi-mode response spectrum analysis described in 2.4 or linear response A
history analysis described in 2.5.1 is used, the ef ective storey dri t , §;; , of the j’th column or A
structural wall at the i’th storey of a building shall be obtained in each direction by Eq.(2.23). A

A S %{ Ay A 2.23) A

2.7.1.3 — The maximum value of effective storey drifts, 0; max, Obtained in each direction for A
columns or structural walls of a given i’th storey of a building shall satisfy the condition given A
by Eq.(2.24): A

A OB 00 A 2.24) A
iA

This limit may be exceeded by 50% in single storey frames where seismic loads are fully A

resisted by steel frames with joints capable of transferring cyclic moments. A

A

2.7.1.4 — The Aimit &iven Ay Aq.(2.24) Anay Ae Axceeded Ay R0% Af Aonlinear Analysis A

procedure is performed in accordance with 2.5.2. For nonlinear analysis, the displacements A

determined are those obtained directly from the analysis without further modification. A

A

2.7.1.5 — In the case where the condition given in 2.7.1.3 or 2.7.1.4, whichever applicable, is A

not Aatisfied At Any Atorey Af Ahe Auilding, Ahe Aeismic Analysis Ahall e Aepeated Avith A

increased stiffness of the structural system. A

A

2.7.2. Seismic Joints A

A

Excluding the effects of differential settlements and rotations of foundations and the effects of A

temperature change, sizes of gaps to be retained in the seismic joints between building blocks A

or between the old and newly constructed buildings shall be determined in accordance with A

the following conditions: A

A

2.7.2.1 — Sizes of gaps to be provided shall not be less than the square root of sum of squares A

of average storey displacements of the adjacent buildings (or buildingblocks) multiplied by A

the coefficient ag specified below. Storey displacements to be considered are the average A

values of reduced displacements dj; calculated at the column or structural wall joints of i’th A

storey. In the cases where the seismic analysis is not performed for the existing old building, A



A

the storey displacements shall not be assumed to be less than those obtained for the new A
building at the same stories. A

a) ag = 0.67 ¢/I) shall be taken if all floor levels of adjacent buildings or building blocks are A
the same. A

b oG = g¢/I) shall be taken if any of the floor levels of adjacent buildings or building blocks A
are not the same. A

A

2.7.2.2 — Seismic joints shall be arranged to allow the independent movement of building A
blocks in all earthquake directions. A

> >



A

2.8. ANALYSIS REQUIREMENTS FOR NONSTRUCTURAL SYSTEMS A

A

2.8.1 — Analysis requirements for nonstructural elements in low- to medium rise buildings are A
given in the following paragraphs. The relevant requirements for tall buildings are given in A
54. A

A

2.8.2 — Equivalent seismic loads to be applied to structural appendages such as balconies, A
parapets, chimneys, etc. and to all architectural elements such as facade and partition panels, A
etc. as well as the seismic loads to be used for the connections of mechanical and electrical A
equipment to the structural system elements are given by Eq.(2.25). A

A 2028 1m | P 2Aa | A 2.25) A
® HN (

Seismic load shall be applied horizontally to the mass centre of the element concerned in a A
direction to result in most unfavourable internal forces. The seismic loads to be applied to A
non-vertical elements shall be half the equivalent seismic load calculated by Eq.(2.25). A

A

2.8.3 — For the following non-structural elements the, the Element Importance Factor I, shall A
not be less than 1.5: A

a) Anchorage elements of machinery and equipment required for life safety systems, A

b Tanks and vessels containing toxic or explosive substances considered to be hazardous to A
the safety of the general public. A

A

In all other cases, the Element Importance Factor I, may be assumed to be equal to unity. A

A

2.8.4 — In the case where the sum of mechanical or electrical equipment masses, as denoted by A
m. in Eq.(2.25), exceeds 0.2m; at any i’th storey, equipment masses and stiffness properties of A
their connections to the building shall be taken into account in the earthquake analysis of the A
building structural system. A

A

2.8.5 — In the case where Aoor acceleration spectrum is determined by appropriate methods to A
define the peak acceleration at the floor where mechanical or electrical equipment is located, A
Eq.(2.25) may not be applied. A

A

2.8.6 — Twice the seismic load calculated by Eq.(2.25) or determined according to 2.8.5 shall A
be considered for fire extinguishing systems, emergency &lectrical systems as Avell as for A
equipments connecting to infill walls and for their connections A
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CHAPTER 3 A
SEISMIC DESIGN REQUIREMENTS A
FOR REINFORCED CONCRETE BUILDINGS A

A
3.1. SCOPE AND DESIGN CONCEPTS A
A
3.1.1. Scope A
A
3.1.1.1 A A'his Ahapter applies Ao Ahe Aeismic Alesign Af Alements Af Aeinforced Aoncrete A
buildings. A
A
3.1.1.2 — The rules given in this chapter are additional to those given in EN 1992-1-1:2004. A
A
3.1.2. Design Concepts A
A
3.1.2.1 A MDesign Af Aarthquake Aesistant Aeinforced Aoncrete Auildings Ahall Arovide Ahe A
structure with an adequate energy dissipation capacity without substantial reduction of its A
overall resistance against horizontal and vertical loading. Adequate resistance of all structural A
elements shall be provided, and non-linear deformation demands in critical regions should be A
compatible with the overall ductility assumed in calculations. A
A
3.1.2.2 — Reinforced concrete buildings may alternatively be designed for low dissipation A
capacity and low ductility, by applying only the rules of EN 1992-1-1:2004 for the seismic A
design situation, and neglecting the specific provisions given in this chapter. The class of such A
buildings are identified as Low Ductility Class (DCL . A
A
3.1.2.3 — Reinforced concrete buildings other than those to which 3.1.2.2 applies, shall be A
designed to provide Anergy dissipation capacity and An overall ductile behaviour. Overall A
ductile behaviour is ensured if the ductility demand involves globally a large volume of the A
structure Apread to different Alements And locations Af All its Atoreys. To this And ductile A
modes of failure e.g. flexure) should precede brittle failure modes e.g. shear) with sufficient A
reliability. The class of such buildings are identified as Normal Ductility Class DCN), for A
which reinforced concrete seismic design requirements are given in the remainder of Chapter A
3. A
A
3.1.2.4 — Unless a more accurate analysis of the cracked elements is performed, the elastic A
flexural and shear stiffness properties of reinforced concrete elements may be taken to be A
equal to one-half of the corresponding stiffness of the uncracked elements. A
A
3.1.3. Structural types and Behaviour Factors A
A
3.1.3.1 — Reinforced concrete buildings are classified with respect to structural types and their A
combinations as follows: A

a) Moment-resisting frame system is defined as a structural system composed of moment-A
resisting frames only. A

b Coupled structural wall system is defined as a structural system composed of coupled A
structural Avalls Anly. Loupled Atructural Avalls Are Anade Arom Asolated Atructural Avalls A
connected with relatively stiff coupling beams such that base overturning moments of isolated A
walls are reduced by at least 25% under the same lateral loads. A

A 34
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¢) Uncoupled structural wall system is defined as a structural system composed of uncoupled A
isolated) structural walls only. A

d Frame-dominant dual system is defined As A Atructural Aystem Aomposed Af Anoment-A
resisting Arames, Avhich Aesist Anore Ahan A0% Aof Ahe Aotal Acalculated Aase Ashear, An A
combination with coupled or uncoupled walls. A

e) Wall-dominant dual system (coupled walls) is defined as a structural system composed of A
coupled structural walls, which resist more than 50% of the total calculated base shear, in A
combination with moment-resisting frames and/or uncoupled walls. A

f Wall-dominant dual system uncoupled walls) is defined as a structural system composed A
of uncoupled isolated) structural walls, which resist more than 50% of the total calculated A
base shear, in combination with moment-resisting frames and/or coupled walls. A

g) Inverted pendulum system in which 50% or more of the mass is in the upper third of the A
height of the structure, or in which the dissipation of energy takes place mainly at the base of A
a single building element. One-storey frames with column tops connected along both main A
directions of the building and with the value of the column normalized axial load less than 0.3 A
are excluded. A

A

3.1.3.2 — Reinforced concrete buildings may be classified to one type of structural system in A
one horizontal direction and to another in the other direction. A

A

3.1.3.3 — Behaviour factors for all structural types of Low Ductility Class (DCL shall be A
takenasg=1. A

A

3.1.3.4 — Behaviour factors for structural types of Normal Ductility Class DCN) shall be A
taken from Table 3.1. A

A
Table 3.1 — Behaviour Factors g for reinforced concrete structural types A
Structural type A qf

Moment resisting frame system A 35A
Coupled structural wall system A 35A
Uncoupled structural wall system A 2.0A
Frame-dominant dual system A 30A
Wall-dominant dual system (coupled walls) A 30A
Wall-dominant dual system (uncoupled walls) A 2.0 A
Inverted pendulum system A 1.5A

A

A

3.1.4. Design actions A

A

3.1.4.1 — With the exception of structural walls, for which the special provisions of 3.4 apply, A
the design values of bending moments and axial forces shall be obtained from the analysis of A
the structure for the seismic design situation in accordance with 2.6. A

A

3.1.4.2 A A'he Alesign Aalues Af Ahear Aorces Af Aeams, Aolumns And Atructural Avalls Are A
determined in accordance with 3.2, 3.3 and 3.4, respectively. A

A 35



A

3.1.5. Capacity Design Rules A

A

3.1.5.1 — Brittle failure or other undesirable failure mechanisms e.g. concentration of plastic A
hinges in columns of A single storey of a multistorey building, shear failure of structural A
elements, failure of beam-column joints, yielding of foundations or of any element intended to A
remain elastic) shall be prevented, by deriving the design action effects of selected regions A
from equilibrium conditions, assuming that plastic hinges with their possible overstrengths A
have been formed in their adjacent areas. A

A

3.1.5.2 — An Aoment Aesisting Arame Aystems, Ancluding Arame-dominant Alual Aystems As A
defined in 3.1.3.1, the following condition should be satisfied at all beam-column joints: A

A Y My kol 3 Y Mfy,, A 3.1)A

3.1.5.3 — In Arder that A£q.(3.1) is Applied, beams framing into the joint Ahall Aatisfy the A
dimensional requirements given in 3.2.1 and 3.3.1. A

A

3.1.5.4 — Slab reinforcement parallel to the beam and within the effective flange width shall A
be Aonsidered Ao Aontribute Ao Ahe Adeam Alexural Aapacities Aaken Anto Account Aor Ahe A
calculation of & My, in Eq.(3.1), if it is anchored beyond the beam section at the face of the A
joint. A

A

3.1.5.5 — Eq.(3.1) shall be satisfied separately for both earthquake directions and senses with A
the column moments always opposing the beam moments to yield the most unfavourable A
result. In calculating the column moment resistances, axial forces shall be taken to yield the A
minimum moments consistent with the sense of earthquake direction. A

A

3.1.5.6 — If the structural system is a frame or equivalent to a frame in only one of the two A
main horizontal directions Af the Atructural Aystem, then A(q.(3.1) should be Aatisfied just A
within the vertical plane through that direction. A

A

3.1.5.7 — Special situations regarding the application of Eq.(3.1) are given in the following: A

(a) Eq.(3.1) need not to be satisfied in the case where normalized axial force is vg < 0.10 in A
both columns framing into the joint. A

b) Eq.(3.1) need not to be satisfied at the base of any frame. A

(c) Eq.(3.1) need not to be checked in single storey buildings and in joints of topmost storey A
of multi-storey buildings. A

A
3.1.5.8 — Eq.(3.1) may be permitted not to be satisfied in a given earthquake direction at a A
certain number of joints at the bottom and/or top of a storey, provided that Eq.(3.2) holds. A

A o= K975 A 32)A
icA

Columns with normalized axial force v4 < 0.10 may be taken into account in the calculation of A

Vis even if they do not satisfy Eq.(3.1). A

A

3.1.5.9 — In the case where Eq.(3.2) holds, bending moments and shears of columns satisfying A

Eq.(3.1) at both bottom and top joints shall be amplified by multiplying with the ratio 1/o;) A

within the range of 0.75 < o; < 1.00. A

A 36



A

3.1.6. Material requirements A

A

3.1.6.1 — In buildings of both Low Ductility Class (DCL and Normal Ductility Class DCN) A
reinforcing steel of class B or C in EN 1992-1-1:2004, Table C.1 shall be used. A

A

3.1.6.2 — The following material requirements shall apply for buildings of Nominal Ductility f
Class (DCN): A

a) Concrete of a class lower than C 16/20 shall not be used. A
b Only ribbed bars shall be used as reinforcing steel. A

¢) Welded wire meshes may be used, if they meet the requirements in b above and in A
3.1.6.1. A

A

3.1.7. Local ductility requirements A

A

3.1.7.1 — For the required overall ductility of the structure to be achieved, the potential regions A
for plastic hinge formation, to be defined later for each type of building element, shall possess A
high plastic rotational capacities. A

A

3.1.7.2 — In order to satisfy the requirement given in 3.1.7.1, the following conditions shall be A
met: A

a) The curvature ductility factor e of all critical regions of elements, including column ends A
depending on the potential for plastic hinge formation in columns) shall be at least equal to A
the following values: A

ugy, 1+ 2,6011*_ 1}%’? O T{<Ty
A olf 1A A 33)A
q
M 2A]7—1 (T T) ¢

b Aocal Auckling &f Aompressed Ateel Avithin potential Alastic Ainge Aegions Af Arimary A
seismic elements shall be prevented. Relevant application rules are given in 3.2.3, 3.3.3 and A
343. A

A

3.1.7.3 — A ppropriate concrete and steel qualities are Adopted to ensure local ductility As A
follows: A

a) Steel Aised An Aritical Aegions Af Aeismic &lements Ahould Aave Aigh Ainiform Alastic A
elongation (see 3.1.6.1); A

b Tensile strength to yield strength ratio of the steel used in critical regions of primary A
seismic elements should be significantly higher than unity. Reinforcing steel conforming to A
the requirements of 3.1.6.1 may be deemed to satisfy this requirement; A

¢) Concrete used in primary seismic elements should possess adequate compressive strength A
and a fracture strain which exceeds the strain at the maximum compressive strength by an A
adequate Anargin. Concrete Aonforming to the Aequirements Af 8.1.6.2 Anay be deemed to A
satisfy these requirements. A

A

3.1.7.4 — In critical regions of elements with longitudinal reinforcement of steel class B in EN A
1992-1-1:2004, Table C.1, the curvature ductility factor pe should be at least equal to 1.5 A
times the value given by Eq.(3.3). A



A

3.2. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE BEAMS A
31.&2.1. Geometrical requirements A

31?2.1.1 — The distance between the centroidal axes of a beam and the column into which it A
frames shall be limited to less than b,/ 4. A

32.1.2 — Width by, of a beam shall satisty the following expression: A

bfSamin{ bf+hf ,2b,y A 34)A

3.2.1.3 — The effective flange width b.r may be taken as follows: A

a) In beams framing into exterior columns, the effective flange width bes as taken, in the A
absence of a transverse beam, as being equal to the width bc of the column, or if there is a A
transverse beam of similar depth, equal to this width increased by 24¢ on each side of the A
beam. A

b In beams framing into interior columns the above widths may be increased by 24¢ on each A
side of the beam. A

A

3.2.1.4 — For a beam supporting columns discontinued below the beam, the following rules A
apply: A

a) There shall be no eccentricity of the column axis relative to that of the beam. A

b The beam shall be supported by at least two direct supports, such as walls or columns. A

A
3.2.2. Design shear forces of beams A
A
3.2.2.1 — In beams the design shear forces shall be determined in accordance with the capacity A
design rule, on the basis of the equilibrium of the beam under: a the transverse load acting on A
it in the seismic design situation and b) end moments MidAwith i = 1,2 denoting the end A
sections of the beam , &Aorresponding to plastic hinge formation for positive and negative A
directions of seismic loading: A

MY ]
A VEie Vfd,GAiM A 3.5) A

clA

The plastic hinges should be taken to form at the ends of the beams or if they form there first A
in the vertical elements connected to the joints into which the beam ends frame. A

A

3.2.2.2 — End moments M; 4 may be determined as follows: A

A M5 MRb,iAmin[l, M RCij A 3.6) A
(V) RbA/(

The value of & My, shall be compatible with the the column axial force s) in the seismic A
design situation for the considered sense of the seismic action. A

A



A

3.2.2.3 — At a beam end where the beam is supported indirectly by another beam, instead of A
framing into a vertical member, the beam end moment M, 4 there may be taken as being equal A
to the acting moment at the beam end section in the seismic design situation. A

A

3.2.2.4 A And moments Af; 4 Aeed Aot Axceed Ahose Abtained Arom Aeismic Analysis Avith

g/l =1. A

A

3.2.3. Seismic detailing of beams A
A

3.2.3.1 — The regions of a beam up to a distance /., = hy, Wwhere &, denotes the depth of the A
beam) from an end cross-section where the beam frames into a beam-column joint, as well as A
from both sides of any other cross-section liable to yield in the seismic design situation, shall A
be considered as being critical regions. A

A

3.2.3.2 — In beams supporting discontinued cut-off) vertical elements, the regions up to a A
distance of 24w on each side of the supported vertical element should be considered as being A
critical regions. A

A

3.2.3.3 — The following conditions shall be met at both flanges of the beam along the critical A
regions: A

a) At the compression zone, reinforcement of not less than half of the reinforcement provided A
at the tension zone shall be placed, in addition to any compression reinforcement needed for A
the verification of the beam in the seismic design situation. A

b The reinforcement ratio of the tension zone, p, shall not exceed a value pmax equal to: A

A PnE P RO0I8A cp 3.7)A

“’(po? sy,dA ydA

with Ahe Aeinforcement Aatios Af Ahe Aension Aone And Aompression 4Aone, A& And 4 , Aoth A
normalised to bd, where b is the width of the compression flange of the beam. If the tension A
zone Ancludes A Alab, Ahe Amount Af Alab Acinforcement Aarallel Ao Ahe Aeam Avithin Ahe A
effective flange width defined in 3.2.1.3 is included in p. A

A

3.2.3.4 — Along the entire length of a beam, the reinforcement ratio of the tension zone, p, A
shall be not less than the following minimum value pmin: A

A Prmini 0.5ASD 3.8) A
ykA

3.2.3.5 — Within the critical regions of beams, hoops satisfying the following conditions shall A
be provided: A

a) The diameter dy,, of hoops shall be not less than 6 mm. A

b The spacing, s, of hoops (in millimetres) shall not exceed: A
A s Aemin {hf, 24df, 4 225, 8df A 3.9 A

¢) The first hoop shall be placed not more than 50 mm from the beam end section. A
A



A

3.3. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE A
COLUMNS A

A
3.3.1. Geometrical requirements A
A
3.3.1.1 — Shorter dimension of columns with rectan%ular section shall not be less than 300 A
mm and section area shall not be less than 90000 mm”. Diameter of circular columns shall be A
at least 300 mm. Minimum column dimensions may be reduced to 250 mm and minimum A
area of rectangular section may be reduced to 62500 mm” in buildings with no more than A
three stories above ground. A
A
3.3.1.2 — Normalised axial force of column, v4, shall satisfy the condition of v4 <0.65. A
A
3.3.2. Design shear forces of columns A

A
3.3.2.1 — In columns the design values of shear forces shall be determined in accordance with A
the capacity design rule, on the basis of the equilibrium of the column under end moments A
M4 (with 1 = 1,2 denoting the end sections of the column), corresponding to plastic hinge A
formation for positive and negative directions of seismic loading. A

Mf L
A Vo At Maan o 3.10) A

lclA

The plastic hinges should be taken to form at the ends of the beams connected to the joints A

into which the column end frames, or if they form there first) at the ends of the columns. A
A
3.3.2.2 — End moments M; 4 may be determined as follows: A

A Mi,dA 1.1 ]\ch,iAInin[1 > Mij A 3.11) A
ReA/t

The values of A Mj;, and Y. Mf,, shall be compatible with the column axial force s in the A
seismic design situation for the considered sense of the seismic action. A

A
3.3.2.3 A And moments Af; 4 Aeed Aot Axceed Ahose Abtained Arom Aeismic Analysis Avith
gl =1. A

A
3.3.3. Seismic detailing of columns A

A

3.3.3.1 — The total longitudinal reinforcement ratio p; shall be not less than 1% and not more A

than At%. An Aymmetrical Aross-sections Aymmetrical Aeinforcement Ahould Ade Arovided
p=p".A

A

3.3.3.2 — At least one intermediate bar shall be provided between corner bars along each A

column side, to ensure the integrity of the beam-column joints. A

A

3.3.3.3 A A'he Aegions Aip Ao A Alistance A Atom Aoth And Aections Af A Aolumn Ahall Ae A

considered as being critical regions. A

A



A

3.3.3.4 — In the absence of more precise information, the length of the critical region /er (in A
metres) may be computed from the following expression: A

A If.= max {hf,If;{ 6,045} A 3.12) A

3.3.3.5 - If . / h. < 3, the entire height of the column shall be considered as being a critical A
region and shall be reinforced accordingly. A

A

3.3.3.6 — Confinement reinforcement for the critical regions shall not be less than given by A
Eq.(3.13). A

A oo,45 30 u(P&;dg,@,dAZ—iA—(ﬁ.O?aS A 3.13) A
A

where a is the confinement effectiveness factor, equal to oo = a,, oy with components o, and A
o, defined as follows: A

a) For rectangular cross-sections: A

o p2A © sf)[o sf
A 1- iA ; l—oX || -—— | A 3.14) A
o %gbohfj xe [m 2be(® 2y )

where n is the total number of longitudinal bars laterally engaged by hoops or cross ties; and A
b; is the distance between consecutive engaged bars. A

b For circular cross-sections with circular hoops: A

o sf *

A o= 1 ; ogr | l-o— g A 3.15) A
() 2Do Q)

¢) For circular cross-sections with spiral hoops: A

A a=1 e |T-—L A 3.16) A
(O] 2’Do (

3.3.3.7 — A minimum value of Ayq  0.08 shall be provided within the critical region at the A
base of columns. A

A

3.3.3.8 — Within the critical regions of the primary seismic columns, hoops and cross-ties, of A
at least 6 mm in diameter, shall be provided with the following conditions: A

a) A'he Apacing, A, Af Ahe Aoops Ain Anillimetres) Ahall Aot Axceed Ahe Aralue &iven Ay A
Eq.3.17). A

A s Aamin{b,/2,175,8d, | A 3.17) A

b The distance between consecutive longitudinal bars engaged by hoops or cross-ties shall A
not exceed 200 mm, taking into account EN 1992-1-1:2004, 9.5.3(6). A

A

3.3.4. Seismic detailing of beam-column joints A

A

3.3.4.1 — The horizontal confinement reinforcement in joints of beams with columns should A
be not less than that specified in 3.3.3.6 — 3.3.3.8 for the critical regions of columns, with the A
exception of the case listed in the following paragraph. A

A

A 41



A

3.3.4.2 — If beams frame into all four sides of the joint and their width is at least threequarters A
of Ahe Aarallel Aross-sectional Alimension Af Ahe Aolumn, Ahe Apacing Af Ahe Aworizontal A
confinement reinforcement in the joint may be increased to twice that specified in 3.3.4.1, but A
may not exceed 150 mm. A

A

3.3.4.3 A At Acast Ane Antermediate Abetween Aolumn Aorner Adars) Arertical Adar Ahall Ae A
provided at each side of a joint of primary seismic beams and columns. A

> >



A

3.4. SEISMIC DESIGN REQUIREMENTS FOR REINFORCED CONCRETE A
STRUCTURAL WALLS A

A

3.4.1. Geometrical requirements A

A

3.4.1.1 — Structural walls are the vertical elements of the structural system where the ratio of A

length to thickness in plan is equal to at least 4. A

A

3.4.1.2 — Web thickness of structural walls, by, , in metres) should satisfy the following A

expression: A

A bf,2emax {0AS, hf/20} A 3.18) A

Additional Aequirements Apply Avith Aespect Ao Ahe Ahickness Af Ahe Aonfined Adoundary A
elements of walls, as specified in 3.4.3.3. A

A

3.4.1.3 — Normalised axial force of column, v4, shall satisfy the condition of v4 < 0.40. A

A

3.4.1.4 A- AComposite Avall Aections Aonsisting fof Aonnected Aor Antersecting Aectangular A
segments L-, T-, U-, I- or similar sections) should be taken as integral units, consisting of a A
web or webs parallel or approximately parallel to the direction of the acting seismic shear A
force and a flange or flanges normal or approximately normal to it. For the calculation of A
flexural resistance, the effective flange width on each side of a web should be taken to extend A
from the face of the web by the minimum of a) the actual flange width; b) one-half of the A
distance to an adjacent web of the wall; and ¢ 25% of the total height of the wall above the A
level considered. A

A

3.4.1.5 — Discontinued structural walls shall not rely for their support on beams or slabs. A

A

3.4.2. Design bending moments and shear forces of structural walls A

A

3.4.2.1 — In walls with H,,/ £, < 2.0, design bending moments and shears determined using A
appropriate ¢ factor given in 3.1.3 shall be amplified by a factor of [3 / H,,/ {y)]. However A
this factor shall exceed 2. A

A

3.4.2.2 — In walls satisfying the condition Hy, / €y, > 2.0, design bending moments along the A
critical wall height determined according to 3.4.3.1 shall be taken as a constant value being A
equal to the bending moment calculated at the wall base. Above the critical wall height, a A
linear bending moment diagram shall be applicable which is parallel to the line connecting the A
moments calculated at the base and at the top of the wall. A

A

3.4.2.3 — In walls satisfying the condition H, / ¢y > 2.0, design shear forces at any cross A
section shall be calculated with Eq.(3.19). A

A V pan BVEy, A 3.19) A

where shear amplification factor ¢ is defined as A

3.20) A




A

3.4.3. Seismic detailing of structural walls A
A
3.4.3.1 — Height of the critical region A above the base of the wall is given by Eq.(3.21): A

A hf = max{ljg s hiA 6} A 321) A
However, the critical wall height h., shall satisfy the following limitations: A

YN
A hySd, (n < storeys A 3.22) A

hySdh,  (n=d storeys).

3.4.3.2 — Boundary elements shall be appropriately defined at the extremities of the wall cross A
section. The length of each boundary element along the critical wall height shall not be less A
than 20% of the total plan length of the wall, nor shall it be less than two times the wall A
thickness. The plan length of each boundary element along the wall section above the critical f
wall height shall not be less than 10% of the total plan length of the wall, nor shall it be less A
than the wall thickness. A

A

3.4.3.3 — The thickness by, of the confined parts of the wall section (boundary elements) shall A
not be less than 200 mm. Moreover, if the length of the confined part does not exceed the A
maximum of 2 by and 0.2 [, by, shall not be less than Ay/15. If the length of the confined part A
exceeds the maximum of 2 by and 0.2 [, , by shall not be less than Ay/10. A

A

3.4.3.4 A AMechanical Avolumetric Aatio Aof Ahe Aequired Aonfining Aeinforcement A 4 Ain A
boundary elements is given by Eq.(3.23): A

A
A aoy5 30 Hg,Vasto vA8§9,dAZ_§ —-®.035 A 3.23) A
A

where A, is the mechanical ratio of vertical web reinforcement (A, = py aqv/ Ad - A

A

3.4.3.5 — The longitudinal reinforcement ratio in the boundary elements shall be not less than A
0.5%. A
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A

3.5. REQUIREMENTS FOR ANCHORAGE AND SPLICING OF REBARS A

A

3.5.1. General A

A

3.5.1.1 — EN 1992-1-1:2004, Section 8 for the detailing of reinforcement applies, with the A
additional rules of the following sub-clauses. A

A

3.5.1.2 — For hoops used as transverse reinforcement in beams, columns or walls, closed A
stirrups with 135° hooks and extensions of length 10dy,, shall be used. A

A

3.5.1.3 — The anchorage length of beam or column bars anchored within beam-column joints A
shall be measured from a point on the bar at a distance 5dy, inside the face of the joint, to take A
into account the yield penetration due to cyclic post-elastic deformations. A

A

3.5.2. Anchorage of rebars A

A

3.5.2.1 — When calculating the anchorage or lap length of column bars which contribute to the A
flexural strength of elements in critical regions, the ratio of the required area of reinforcement A
over the actual area of reinforcement shall be assumed to be unity. A

A

3.5.2.2 — If, under the seismic design situation, the axial force in a column is tensile, the A
anchorage lengths shall be increased to 50% longer than those specified in EN 1992-1-1:2004. A
A

3.5.2.3 — The Apart Af Aeam Aongitudinal Aeinforcement Aent An Aoints Aor Anchorage Ahall A
always be placed inside the corresponding column hoops. A

A

3.5.2.4 — To prevent bond failure the diameter of beam longitudinal bars passing through A
beam-column joints, dy, shall be limited in accordance with the following expressions: A

a) For interior beam-column joints: A

+
A dbLAZQZ'SACth (108vg A 3.24) A

ydA 1+0549 /pmaxA

b For exterior beam-column joints: A

A dbLAz(g%A(l +0.8vy) A 3.25) A

ydA

Eq.(3.24) and Eq.(3.25) are not applicable to diagonal bars crossing joints. A

A

3.5.2.5 — If the requirement specified in 3.5.2.4 cannot be satisfied in exterior beam-column A
joints because the depth, 4, of the column parallel to the bars is too shallow, the following A
additional measures may be taken to ensure anchorage of the longitudinal reinforcement of A
beams. A

a) The beam or slab may be extended horizontally in the form of exterior stubs. A
b Headed bars or anchorage plates welded to the end of the bars may be used. A

¢) Bends with a minimum length of 10dy;, and transverse reinforcement placed tightly inside A
the bend of the bars may be added. A



A

3.5.2.6 — Top or bottom bars passing through interior joints, shall terminate in the members A
framing into the joint at a distance not less than /,; length of the member critical region from A
the face of the joint (see 3.2.3.1 . A

A

3.5.3. Splicing of rebars A

A

3.5.3.1 — There shall be no lap-splicing by welding within the critical regions of structural A
elements. A

A

3.5.3.2 — There may be splicing by mechanical couplers in columns and walls, if these devices A
are covered by appropriate testing under conditions compatible with the selected ductility A
class. A

A

3.5.3.3 — The transverse reinforcement to be provided within the lap length shall be calculated A
in accordance with EN 1992-1-1:2004. In addition, the following requirements shall also be A
met: A

a) If the anchored and the continuing bar are arranged in a plane parallel to the transverse A
reinforcement, the sum of the areas of all spliced bars shall be used in the calculation of the A
transverse reinforcement. A

b If the anchored and the continuing bar are arranged within a plane normal to the transverse A
reinforcement, the area of transverse reinforcement shall be calculated on the basis of the area A
of the larger lapped longitudinal bar. A

¢) The spacing, s, of the transverse reinforcement in the lap zone in millimetres shall not A
exceed A

A sf=min{h/4,100} A 3.26) A

3.5.3.4 — The Aequired Area Af Aransverse Aeinforcement My Avithin Ahe Aap Zone Af Ahe A
longitudinal reinforcement of columns spliced at the same location as defined in EN 1992-1-A
1:2004), for Aof Ahe Aongitudinal Aeinforcement Af Adoundary Alements An Awalls, Anay /e A
calculated from the following expression: A

A Ay sf e 327) A
S0A yan
A
A
A
A
A
A
A
A
A
A
A
A
A



A

3.6. DESIGN AND DETAILING OF SECONDARY SEISMIC ELEMENTS A

A

3.6.1 — Secondary seismic elements, which are defined in 1.6.2 shall be designed and detailed A
to maintain their capacity to support the gravity loads present in the seismic design situation, A
when subjected to the maximum deformations under the seismic design situation. A

A

3.6.2 — Maximum deformations due to the seismic design situation, as mentioned in 3.6.1, A
shall be calculated in accordance with 2.7. They shall be calculated from an analysis of the A
structure An Ahe Aeismic Alesign Aituation, An Avhich Ahe Aontribution Af Aecondary Aeismic A
elements to lateral stiffness is neglected and primary seismic elements are modeled with their A
cracked flexural and shear stiffness. A

A

3.6.3 — Bending moments and shear forces of secondary seismic elements shall be calculated A
with maximum deformations defined in 3.6.2, using their cracked flexural stiffnesses and, if A
necessary, shear stiffnesses. They shall not exceed their design flexural and shear resistances A
determined on the basis of EN 1992-1-1:2004. A
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A

3.7. SEISMIC DESIGN REQUIREMENTS FOR FOUNDATIONS A

A

3.7.1. General A

A

3.7.1.1 — The following paragraphs apply for the design of concrete foundation elements, such A
as footings, tie-beams, foundation beams, foundation slabs, foundation walls, pile caps and A
piles, As Avell As Aor Aonnections Aetween Auch A&lements, Ar Aetween Ahem And Aeertical A
concrete elements. The design of these elements shall follow the rules of EN 1998-5:2004, A
54.A

A

3.7.1.2 — Design Aalues Af Ahe Action Affects A'rd on Ahe Aoundations Ahall Ae Alerived As A
follows: A

A Epgp= Epgat QEpg, A 3.28) A

3.7.1.3 — In box-type basements of dissipative structures, comprising: a a concrete slab acting A
as a rigid diaphragm at basement roof level; b a foundation slab or a grillage of tie-beams or A
foundation Aeams At Aoundation Aevel, And &) Aeripheral And/or Anterior Aoundation Avalls, A
columns and beams (including those at the basement roof) are expected to remain elastic A
under Ahe Aeismic Alesign Aituation. AShear Avalls Ahould e Alesigned AXor Aplastic Ainge A
development at the level of the basement roof slab. To this end, in walls which continue with A
the same cross-section above the basement roof, the critical region should be taken to extend A
below the basement roof level up to a depth of 4 see 3.4.3.1). Moreover, the full free height A
of such walls within the basement should be dimensioned in shear assuming that the wall A
develops its flexural overstrength 1.1 M4 at the basement roof level and zero moment at the A
foundation level. A

A

3.7.2. Tie-beams and foundation beams A

A

3.7.2.1 — Stub columns between the top of a footing or pile cap and the soffit of tie-beams or A
foundation slabs shall be avoided. To this end, the soffit of tie-beams or foundation slabs shall A
be below the top of the footing or the pile cap. A

A

3.7.2.2 — Axial forces in Aie-beams Ar Aie-zones Af foundation Alabs in Accordance with A
5.4.1.2(6) and 7) of EN 1998-5, should be taken in the verification to act together with the A
action effects derived for the seismic design situation. A

A

3.7.2.3 — Tie-beams and foundation beams should have a cross-sectional width of at least A

by.min = 250 mm and a cross-sectional depth of at least /1y, min = 400 mm. A
A

3.7.2.4 — Foundation slabs arranged in accordance with EN 1998-5:2004, 5.4.1.2(2) for the A
horizontal connection of individual footings or pile caps, should have a thickness of at least A

tmin = 200 mm and a reinforcement ratio of at least pg i, = 0.2% at the top and bottom. A
A

3.7.2.5 — Tie-beams and foundation beams should have along their full length a longitudinal A
reinforcement ratio of at least py i, = 0.4% at both the top and the bottom. A

A

3.7.3. Connections of vertical elements with foundation beams or walls A

A

3.7.3.1 — The common joint) region of a foundation beam or foundation wall and a vertical A
element shall follow the rules of 3.3.4.1 as a beam-column joint region. A



A

3.7.3.2 — The connection of foundation beams or foundation walls with vertical elements shall A
follow the rules of 3.3.4. A

A

3.7.3.3 — Bends or hooks at the bottom of longitudinal bars of vertical elements should be A
oriented so that they induce compression into the connection area. A

A

3.7.4. Cast-in-place concrete piles and pile caps A

A

3.7.4.1 — The top of the pile up to a distance to the underside of the pile cap of twice the pile A
cross-sectional dimension, d, as well as the regions up to a distance of 2d on each side of an A
interface between two soil layers with markedly different shear stiffness (ratio of shear moduli A
greater than 6 , shall be detailed as potential plastic hinge regions. To this end, they shall be A
provided Avith Aransverse And Aonfinement Aeinforcement Aollowing Ahe Aules Aor Aolumn A
critical regions given in 3.3.3. A

A

3.7.4.2 — Piles required to resist tensile forces or assumed as rotationally fixed at the top A
should be provided with anchorage in the pile cap to enable the development of the pile A
design uplift resistance in the soil, or of the design tensile strength of the pile reinforcement, A
whichever is lower. If the part of such piles embedded in the pile cap is cast before the pile A
cap, dowels should be provided at the interface where the connection occurs. A

P i g g i i g A i i a



CHAPTER 4 A
SEISMIC DESIGN REQUIREMENTS A
FOR STRUCTURAL STEEL BUILDINGS A

A
4.1. SCOPE AND DESIGN CONCEPTS A
A
4.1.1. Scope A
A
4.1.1.1 — This Chapter applies to the seismic design of elements of structural steel buildings. A
A

4.1.1.2 — The rules given in this Chapter are additional to those given in EN 1993-1-1:2004. A

A

4.1.2. Design Concepts A

A

4.1.2.1 — Design of earthquake resistant steel buildings shall provide the structure with an A
adequate energy dissipation capacity without substantial reduction of its overall resistance A
against horizontal and vertical loading. Adequate resistance of all structural elements shall be A
provided, and non-linear deformation demands in critical regions should be compatible with A
the overall ductility assumed in calculations. A

A

4.1.2.2 — Steel buildings may alternatively be designed for low dissipation capacity and low A
ductility, by applying only the rules of EN 1993-1-1:2005 for the seismic design situation, and A
neglecting Ahe Apecific Arovisions A&iven An Ahis Ahapter. A'he A&lass Af Auch Auildings As A
identified as Low Ductility Class (DCL . A

A

4.1.2.3 A Ateel Auildings Ather Ahan Ahose Ao Avhich A4.1.2.2 Applies, Ahall Ae Aesigned Ao A
provide Aenergy Adissipation Acapacity Aand Aan Aoverall Aductile Aehaviour. AOverall Aductile A
behaviour is ensured if the ductility demand involves globally a large volume of the structure A
spread to different elements and locations of all its storeys. To this end ductile modes of A
failure Ahould Arecede Arittle Aailure Anodes Avith Aufficient Aeliability. A'he Alass Af Auch A
buildings As Adentified As ANormal Ductility Class ADCN , Aor Avhich Ateel Aeismic Alesign A
requirements are given in the remainder of Chapter 4. A

A

4.1.3. Structural types and Behaviour Factors A

A

4.1.3.1 — Steel buildings are classified with respect to structural types and their combinations A
as follows: A

a) Moment-resisting frame system is defined as a structural system composed of moment-A
resisting frames only. A

b Concentric braced rame system is defined as a structural system composed of concentric A
braced frames only. f

¢) Eccentric braced frame system is defined as a structural system composed of eccentric A
braced frames only. A

d Frame-dominant dual system is defined As A Atructural Aystem &omposed Af moment-A
resisting Arames, Avhich Aesist Anore Ahan A0% Aof Ahe Aotal Acalculated Aase Ashear, An A
combination with eccentric or concentric braced frames. A



A

e) Braced rame-dominant dual system concentric bracing is defined as a structural system A
composed of concentrically braced frames, which resist more than 50% of the total calculated A
base shear, in combination with moment-resisting frames and/or eccentric braced frames. A

f Braced frame-dominant dual system eccentric bracing is defined as a structural system A
composed of eccentrically braced frames, which resist more than 50% of the total calculated A
base shear, in combination with moment-resisting frames and/or concentric braced frames. A

g) Wall-dominant dual system coupled walls) is defined as a structural system composed of A
coupled structural walls, which resist more than 50% of the total calculated base shear, in A
combination Avith Anoment-resisting Arames And/or Aincoupled Avalls And/or Accentric Aor A
concentric braced frames. A

h Wall-dominant dual system uncoupled walls is defined as a structural system composed A
of uncoupled isolated) structural walls, which resist more than 50% of the total calculated A
base Ahear, An Aombination Avith Anoment-resisting Arames And/or Aoupled Avalls And/or A
eccentric or concentric braced frames. A

i Inverted pendulum structures, which are defined in 3.1.3.1 are structures where dissipative A
zones are located at the bases of columns. A

A

4.1.3.2 — Steel buildings may be classified to one type of structural system in one horizontal A
direction and to another in the other. A

A

4.1.3.3 — Behaviour factors for all structural types of Low Ductility Class (DCL shall be A
takenasg=1. A

A

4.1.3.4 — Behaviour factors for structural types of Normal Ductility Class DCN) shall be A
taken from Table 4.1. A

A
Table 4.1 — Behaviour Factors ¢ for steel structural types A
Structural type A qf

Moment resisting frame system A 50A
Eccentric braced frame system A 50A
Concentric braced frame system A 35A
Frame-dominant dual system A 4.0 A
Braced frame-dominant dual system A 4.0 A
(eccentric bracing A A
Braced frame-dominant dual system A 35A
(concentric bracing A A
Wall-dominant dual system (coupled walls) A 3.0A
Wall-dominant dual system (uncoupled walls) A 2.0 A
Inverted pendulum system A 1.5A

A

4.1.4. Material Requirements A

A

4.1.4.1 — Structural steel shall conform to standards referred to in EN 1993. A

A



A

4.1.4.2 — The toughness of the steels and the welds should satisfy the requirements for the A
seismic Action At Ahe Auasi-permanent Aalue Af Ahe Aervice Aemperature Asee AN A993-1-A
10:2004). A

A

4.1.4.3 — In bolted connections of primary seismic members of a building, high strength bolts A
of bolt grade 8.8 or 10.9 should be used. A

A

4.1.4.4 — In the capacity design checks specified in 4.2 to 4.5, the possibility that the actual A
yield strength of steel is higher than the nominal yield strength should be taken into account A
by a material overstrength factor yov=1.25. A
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A

4.2. GENERAL DESIGN CRITERIA AND DETAILING RULES A

A

4.2.1. Design rules for ductile elements in compression or bending A

A

4.2.1.1 — Sufficient local ductility Af members which dissipate Anergy An Aompression Ar A
bending shall be ensured by restricting the width-thickness ratio b/t according to the cross-A
sectional classes specified in EN 1993-1-1:2004, 5.5. A

A

4.2.1.2 — Depending on the ductility class and the behaviour factor ¢ used in the design, the A
requirements Aegarding Ahe Aross-sectional Alasses Af Ahe Ateel Alements Avhich Alissipate A
energy are indicated in Table 4.2. A

: Table 4.2. Required cross-sectional class A
Behaviour Factor A| Cross-sectional A
qA class A
1.5<¢g<2A Class 1,2 0r3 A
2<g<4A Class 1or2 A
A

4.2.2. Design rules for ductile elements in tension A

I;?)r tension members or parts of members in tension, the ductility requirement of EN 1993-1-A
1:2004, 6.2.3(3) should be met. A

f2.3. Design rules for connections A

f2.3.1 — For fillet weld or bolted connections, Eq.(4.1) should be satisfied: A

A Ryu&ol.1y@RE, A 41)A

4.2.3.2 — Categories B and C of bolted joints in shear in accordance with EN 1993-1-8:2004, A
3.4.1 and category E of bolted joints in tension in accordance with EN 1993-1-8:2004, should A
be used. Shear joints with fitted bolts are also allowed. Friction surfaces should belong to A
class A or B as defined in ENV 1090-1. A

A

4.2.3.3 — For bolted shear connections, the design shear resistance of the bolts should be A
higher than 1.2 times the design bearing resistance. A

P i i gl i g g o e
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A

4.3. DESIGN AND DETAILING RULES FOR MOMENT RESISTING FRAMES A

A

4.3.1. Design criteria A

A

4.3.1.1 — Moment resisting frames shall be designed so that plastic hinges form in the beams A
or in the connections of the beams to the columns, but not in the columns, in accordance with A
43.1.2. A

A

4.3.1.2 — In Aoment Aesisting Arame Aystems, Ancluding Arame-dominant Alual Aystems As A
defined in 4.1.3.1, the following condition should be satisfied at all beam-column joints: A

A Y Mg kol 3 ¥ My, A 42) A

4.3.1.3 — Slab reinforcement parallel to the beam and within the effective flange width shall A
be Aonsidered Ao Aontribute Ao Ahe Adeam Alexural Aapacities Aaken Anto Account ALor Ahe A
calculation of & My, in Eq.(4.2), if it is anchored beyond the beam section at the face of the A
joint. A

A

4.3.1.4 — Eq.(4.2) shall be satisfied separately for both earthquake directions and senses with A
the column moments always opposing the beam moments to yield the most unfavourable A
result. In calculating the column moment resistances, axial forces shall be taken to yield the A
minimum moments consistent with the sense of earthquake direction. A

A

4.3.1.5 — If the structural system is a frame or equivalent to a frame in only one of the two A
main horizontal directions Af the Atructural Aystem, then Aq.(4.2) should be Aatisfied just A
within the vertical plane through that direction. A

A

4.3.1.6 — Special situations regarding the application of Eq.(4.2) are given in the following: A

(a) Eq.(4.2) need not to be satisfied at the base of any frame. A

b) Eq.(4.2) need not to be checked in single storey buildings and in joints of topmost storey A
of multi-storey buildings. A

A

4.3.1.7 — Eq.(4.2) may be permitted not to be satisfied in a given earthquake direction at a A
certain number of joints at the bottom and/or top of a storey, provided that Eq.(4.3) holds. A

A o= Kirs9.75 A 43) A

icA

4.3.1.8 — In the case where Eq.(4.3) is satisfied, bending moments and shears of columns A
satisfying Eq.(4.2) at both bottom and top joints shall be amplified by multiplying with the A
ratio (1/04) within the range of 0.75 <oy <1.00. A

A

4.3.2. Beams A

A

4.3.2.1 — Beams should be verified as having sufficient resistance against lateral and lateral A
torsional buckling in accordance with EN 1993, assuming the formation of a plastic hinge at A
one end of the beam. The beam end that should be considered is the most stressed end in the A
seismic design situation. A

A



A

4.3.2.2 — For plastic hinges in the beams it should be verified that the full plastic moment of A
resistance and rotation capacity are not decreased by compression and shear forces. To this A
end, Aor Aections Aelonging Ao Aross-sectional Alasses A And &, Ahe Aollowing Anequalities A
should be verified at the location where the formation of hinges is expected: A

M

—EdA <1.0A
pLRdA
A Near <915 A 4.4) A
pLRdA
Ven < 5A
Vpl,RdA
where A
M raa T o Rapa
A VEa & VEaoar@Eama ; Viam i & b : A 4.5) A

Lf

For sections belonging to cross-sectional class 3, Npira » Mpird » Vpira must be replaced with A
Nel,Rd , Mel,Rd , Vel,Rd n Eq.(4.4) and Eq.(4.5) A

A

4.3.2.3 — The condition in the second expression of Eq.(4.4) may not be verified, provided A
that the provisions of EN 1993-1-1:2004,6.2.9.1 are satisfied. A

A

4.3.3. Columns A

A

4.3.3.1 — The columns shall be verified in compression considering the most unfavourable A
combination of the axial force and bending moments. Nq , Meq , Veq shall be calculated as: A

NEaZ NEaoat 11700 £2 Negpa

A Mfioe Mg i 1100 Q2 MEgpa A 4.6) A
VEae VEagaT 1170y 20 54 pa
where  is the minimum value of ;= M ra;/ Mgq; of all beams, Mg is the design value of A

the bending moment in beam i in the seismic design situation and M, ra;i 1s the corresponding A
plastic moment. A

A

4.3.3.2 — The resistance verification of the columns should be made in accordance with EN A
1993-1-1:2004, Section 6. A

A

4.3.3.3 — The column shear force Vg4 resulting from the structural analysis should satisfy the A
following expression : A

A Vean <0.5 A 4.7) A
Vpl,RdA

4.3.3.4 — The transfer of the forces from the beams to the columns should conform to the A
design rules given in EN 1993-1-1:2004, Section 6. A

A

4.3.3.5 — The shear Aesistance of framed web panels of beam/column Aonnections should A
satisfy the following expression: A

A 55
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A WA 10 A 4.8) A

wp,RdA

where Vypeq 1S the design shear force in the web panel due to the action effects, taking into A
account Ahe Alastic Aesistance Af Ahe Adjacent Aeams Ar Aonnections; Ay, rd As Ahe Ahear A
resistance of the web panel in accordance with EN 1993- 1-8:2004, 6.2.4.1. It is not required A
to take into account the effect of the stresses of the axial force and bending moment on the A
plastic resistance in shear. A

A

4.3.3.6 — The shear buckling resistance of the web panels should also be checked to ensure A
that it conforms to EN 1993-1-5:2004, Section 5: A

y
A —WeEA 10 A 4.9) A
Vwb,RdA

where Vypra 1s the shear buckling resistance of the web panel. A

A

4.3.4. Beam - column connections A

A

4.3.4.1 — If the structure is designed to dissipate energy in the beams, the connections of the A
beams to the columns should be designed for the required degree of overstrength taking into A
account Ahe Anoment Af Aesistance Ad,rq and Ahe Ahear Aorce AlVeqg A Aeam Avaluated An A
4322 A

A

4.3.4.2 — Energy Alissipating Aemi-rigid And/or Aartial Atrength Aonnections Are Aermitted, A
provided that all of the following requirements are verified: A

a) Connections have a rotation capacity consistent with the global deformations A

b Members framing into the connections are demonstrated to be stable at the ultimate limit A
state (ULS); A

¢) Effect of connection deformation on global drift is taken into account using nonlinear A
static (pushover) global analysis or non-linear response history analysis. A

A

4.3.4.3 — The connection design should be such that the chord rotation capacity of the plastic A
hinge region 6, is not less than 25 mrad for structures with ¢ >2. A

A

4.3.4.4 — In experiments made to assess 0, the column web panel shear resistance should A
conform to Eq.(4.7) and the column web panel shear deformation should not contribute for A
more than 30% of the plastic rotation capability 6,. A

A

4.3.4.5 — The column elastic deformation should not be included in the evaluation of 6,. A

A

4.3.4.6 — When partial strength connections are used, the column capacity design should be A
derived from the plastic capacity of the connections. A

>
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A

4.4. DESIGN AND DETAILING RULES FOR FRAMES WITH CONCENTRIC A
BRACINGS A

A

4.4.1. Design criteria A

A

4.4.1.1 — Concentric braced frames shall be designed so that yielding of the diagonals in A

tension will take place before failure of the connections and before yielding or buckling of the A

beams or columns. A

A

4.4.1.2 — Diagonal Alements Af bracings Ahall be placed in Auch A Avay that the Atructure A

exhibits similar load deflection characteristics at each storey in opposite senses of the same A

braced direction under load reversals. In this regard, the following rule should be met at every A

storey: A

-

A ralf

where 4" and 4~ are the areas of the horizontal projections of the cross-sections of the tension A

diagonals, Avhen Ahe Aorizontal Aeismic Aactions Aave A Apositive Aor Anegative Adirection A

respectively. A

A

4.4.2 Analysis A

A

4.4.2.1 — Under gravity load conditions, only beams and columns shall be considered to resist A

such loads, without taking into account the bracing members. A

A

4.4.2.2 — Diagonals Ahall Ae Aaken Anto Account As Aollows An An Alastic Analysis Af Ahe A
structure for the seismic action: A

A <0.05 A 4.10) A

a) In frames with diagonal bracings, only the tension diagonals shall be taken into account. A

b In frames with V bracings, both the tension and compression diagonals shall be taken into A
account. A

A

4.4.2.3 — Taking into account of both tension and compression diagonals in the analysis of A
any type of concentric bracing is allowed provided that all of the following conditions are A
satisfied: A

a) Non-linear static (pushover) global analysis or non-linear time history analysis is used, A

b both pre-buckling and post-buckling situations are taken into account in the modelling of A
the behaviour of diagonals and, A

¢) background information justifying the model used to represent the behaviour of diagonals A
is provided. A

A

4.4.3 Diagonal members A

A

4.4.3.1 — In frames with X diagonal bracings, the non-dimensional slenderness A as defined A
in EN 1993-1-1:2004 should be limited to: 1.3 < A <2.0. A

A

4.4.3.2 — In frames with diagonal bracings in which the diagonals are not positioned as X A
diagonal bracings, the non-dimensional slenderness A should be less than or equal to 2.0. A



A

4.4.3.3 — In frames with V bracings, the non-dimensional slenderness A should be less than or A
equal to 2.0. A

A

4.4.3.4 — In structures of up to two storeys, no limitation applies to A . A

A

4.4.3.5 — Yield resistance Ny rq of the gross cross-section of the diagonals should be such that A
Npird = Ngg. A

A

4.4.3.6 — In frames with V bracings, the compression diagonals should be designed for the A
compression resistance in accordance with EN 1993. A

A

4.4.3.7 — The connections of the diagonals to any member should satisfy the design rules of A
423 A

A

4.4.3.8 — In order to satisfy a homogeneous dissipative behaviour of the diagonals, it should A
be checked that the maximum overstrength ; defined in 4.4.4.1 does not differ from the A
minimum value by more than 25%. A

A

4.4.3.9 — Energy Alissipating Aemi-rigid And/or Aartial Atrength Aonnections Are Aermitted, A
provided that all of the following conditions are satisfied: A

a) Connections have an elongation capacity consistent with global deformations; A

b Effect of connections deformation on global drift is taken into account using nonlinear A
static (pushover) global analysis or non-linear time history analysis. A

A

4.4.4 Beams and columns A

A

4.4.4.1 — Beams and columns with axial forces should meet the following minimum resistance A
requirement: A

A Ny raaM gas®2 Vg Gat 1.1 YR Ng g A 4.11) A

where Nyira Mgq is the design buckling resistance of the beam or the column in accordance A
with EN 1993, taking into account the interaction of the buckling resistance with the bending A
moment Mgy , defined as its design value in the seismic design situation; Ngqg is the axial A
force in the beam or in the column due to the non-seismic actions included in the combination A
of actions for the seismic design situation; Ngqpads the axial force in the beam or in the A
column due to the design seismic action; yov4as the overstrength factor, is the minimum A
value of ;= Npirai/ Neq; over all the diagonals of the braced frame system; where Npjrai 1s A
the design resistance of diagonal i; Ngq; as the design value of the axial force in the same A
diagonal i in the seismic design situation. A

A

4.4.4.2 — In frames with V bracings, the beams should be designed to resist: A

a) All Aon-seismic Actions Avithout Aonsidering Ahe Antermediate Aupport Agiven Ay Ahe A
diagonals; A

b unbalanced vertical seismic action effect applied to the beam by the braces after buckling A
of the compression diagonal. This action effect is calculated using Ny rq for the brace in A
tension and Yy, Ny ra for the brace in compression The factor vy, is used for the estimation of A
the post buckling resistance of diagonals in compression, which may be taken as 0.3). A



A

4.4.4.3 — In frames with diagonal bracings where tension and compression diagonals are not A
intersecting, the design should take into account the tensile and compression forces which A
develop An Ahe Aolumns Adjacent Ao Ahe Adiagonals An Acompression Aand Acorrespond Ao A
compression forces in these diagonals equal to their design buckling resistance. A

> >



A

4.5. DESIGN AND DETAILING RULES FOR FRAMES WITH ECCENTRIC A
BRACINGS A

A

4.5.1. Design criteria A

A

4.5.1.1 — Frames with eccentric bracings shall be designed so that specific elements or parts of A

elements called seismic links are able to dissipate energy by the formation of plastic bending A

and/or plastic shear mechanisms. A

A

4.5.1.2 — Seismic links may be horizontal or vertical components. A
A

4.5.2. Seismic links A

A

4.5.2.1 — The web of a link should be of single thickness without doubler plate reinforcement A
and without a hole or penetration. A

A

4.5.2.2 — Seismic Ainks Are Alassified Anto A Aategories According Ao Ahe Aype Af Alastic A
mechanism developed: A

a) Short links, which dissipate energy by yielding essentially in shear; A
b Long links, which dissipate energy by yielding essentially in bending; A

¢) Intermediate links, in which the plastic mechanism involves bending and shear. A

A

4.5.2.3 — For I sections, the following parameters are used to define the design resistances and A
limits of categories: A

A Mfj e A thd —tf) A 4.12) A
A Vi (A 1A3) tfad —1f) A 4.13) A

4.5.2.4 — If Ngq / Npira < 0.15, the design resistance of the link should satisfy both of the A
following relationships at both ends of the link: A

Ve,
A fus pAnKA A 4.14) A
MJEdASUMp,link/

where Ngq , Meq , Vg are the design axial force, design bending moment and design shear, A
respectively, at both ends of the link. A

A

4.5.2.5 — If Neq / Npira > 0.15, Eqgs.(4.14) should be satisfied with the following reduced A
values V, jinkr and M, jink used instead of V), jink and M, jink : A

Vp,link,rA:AV p,linkA/ 1= Nfad N, pl,RdA2
Mfg,nnk,rA M];,linkAl ~ A Nfiraa

A A 4.15) A

4.5.2.6 — If Ngq / Nyira < 0.15, link length e should not exceed: A



M ..
ef< 1 A —PIkA (if R <®.3).
Vi linka
A ’ A 4.16) A
Mp linkA .
ef<1A———"1.15-0.5R) (if R >0.3):
p,linkA
where A
A Rf= ballind =2 4.17) A
Veaxd
A
in which 4 is the gross area of the link. A
A

4.5.2.7 — To achieve a global dissipative behaviour of the structure, it should be checked that A
the individual values of the ratios i defined in 4.5.2.1 do not exceed the minimum value Q A
resulting from 4.5.2.1 by more than 25% of this minimum value. A

A

4.5.2.8 — When equal moments develop simultaneously at both ends of the link, links may be A
classified according to the length e. For I sections, the categories are: A

M.
Short links:  ef<dwfic 14 p,linkA
p.linkA

: M jina
A Long links: ef>w@, = 3.0—> A 4.18) A
plinkA

Intermediate links: ef,<@f<®, 5

4.5.2.9 — When only one plastic hinge develops at one end of the link, the value of the length A
e defines the categories of the links. For I sections the categories are: A

; M jinia
Short links: ef<w@, 0.8(1+o A
p,linkA

: M, jinka
A Long links: ef>@ 1.5(1+a A=A 4.19) A
p,linkA

Intermediate links: ef,<@f<® 5

where o is the ratio of the smaller bending moments Mgqga at one end of the link in the A
seismic design situation, to the greater bending moments Mgqp at the end where the plastic A
hinge develops, both moments being taken as absolute values. A

A
4.5.2.10 — The link rotation angle 0, between the link and the element outside of the link as A
defined in 4.3.4.3 should be consistent with global deformations. It should not exceed the A
following values: A

Short links: O Ogp & 0.08 radianA
A Long links: 0 0, & 0.02 radianA A 4.20) A
Intermediate links:  Og< 0, by interpolation,



A

4.5.2.11 — Full-depth web stiffeners should be provided on both sides of the link web at the A
diagonal brace ends of the link. These stiffeners should have a combined width of not less A
than (bs— 2t,,) and a thickness not less than 0.75 #,nor 10 mm, whichever is larger. A

A

4.5.2.12 — Links should be provided with intermediate web stiffeners as follows: A

a) Short links should be provided with intermediate web stiffeners spaced at intervals not A
exceeding 30ty — d/5) for a link rotation angle 0p of 0.08 radians or 52t, — d/5) for link A
rotation angles 0p of 0.02 radians or less. Linear interpolation should be used for values of 0p o
between 0.08 and 0.02 radians; A

b Long links should be provided with one intermediate web stiffener placed at a distance of A
1.5 times b from each end of the link where a plastic hinge would form; A

¢) Antermediate Ainks Ahould Ae Arovided Avith Antermediate Aveb Atiffeners Aneeting Ahe A
requirements of a) and b) above; A

d Intermediate web stiffeners are not required in links of length e greater than 5 M,/V,,; A

e) intermediate web stiffeners should be full depth. For links that are less than 600 mm in A
depth d, stiffeners are required on only one side of the link web. The thickness of one-sided A
stiffeners should be not less than #w or 10 mm, whichever is larger, and the width should be A
not less than b5/2) — ¢, . For links that are 600 mm in depth or greater, similar intermediate A
stiffeners should be provided on both sides of the web. A

A

4.5.2.13 — Fillet Avelds Aonnecting A Aink Atiffener Ao Ahe Aink Aveb Ahould Aave A Alesign A
strength adequate to resist a force of v,y A s , where A As the area of the stiffener. The A
design strength of fillet welds fastening the stiffener to the flanges should be adequate to resist A
a force of Yoy Ads/ 4. A

A

4.5.2.14 — Lateral supports should be provided at both the top and bottom link flanges at the A
ends of the link. End lateral supports of links should have a design axial resistance sufficient A
to provide lateral support for forces of 6% of the expected nominal axial strength of the link A
flange computed as Ab ;. A

A

4.5.2.15 — In beams where a seismic link is present, the shear buckling resistance of the web A
panels outside of the link should be checked to conform to EN 1993-1-5:2004, Section 5. A

A

4.5.3. Members not containing seismic links A

A

The Anembers Aot Aontaining Aeismic Ainks, Aike Ahe Aolumns And Aliagonal Anembers, Af A
horizontal links in beams are used, and also the beam members, if vertical links are used, A
should be verified in compression considering the most unfavourable combination of the axial A
force and bending moments: A

A Npg Mgy,N, EdA&("NEd,GA—F LIy QN Ed,E/ A 4.21) A

where Nrq MEqa Nrq) is the axial design resistance of the column or diagonal member in A
accordance with EN 1993, taking into account the interaction with the bending moment Mgq A
and the shear Vg4 taken at their design value in the seismic situation; Ngq g is the compression A
force An Ahe Aolumn Ar Aliagonal Anember Alue Ao Ahe Aonseismic Actions Ancluded An Ahe A
combination of actions for the seismic design situation; Ngq is the compression force in the A
column or diagonal member due to the design seismic action; yov is the overstrength factor Q A



A

is a multiplicative factor which is the minimum of the following values: the minimum value A
of i=1.5 Vpjinki/ Vea; among all short links; the minimum value of ;= 1.5(Mpjink;i / MEq; A
among all intermediate and long links; where Vgqi, Mgq;i are the design values of the shear A
force and of the bending moment in link i in the seismic design situation; V ik » Mp jink,i are A
the shear and bending plastic design resistances of link i as in 4.5.2.3. A

A

4.5.4. Connections of seismic links A

A

4.5.4.1 — If the structure is designed to dissipate energy in the seismic links, the connections A
of the links or of the element containing the links should be designed for action effects £qa
computed as follows: A

A Efebf ot 1.1y, L2 Nfg, A 4.22) A

where Eq4 ¢ is the action effect in the connection due to the non-seismic actions included in the A
combination Af Actions Aor Ahe Aeismic Alesign Aituation; &4 As Ahe Action A&ffect An Ahe A
connection Alue Ao Ahe Alesign Aeismic Action; Aov Ais Ahe Averstrength Aactor, A iaas Ahe A
overstrength factor computed in accordance with 4.5.3 for the link. A

A

4.5.4.2 — In the case of semi-rigid and/or partial strength connections, the energy dissipation A
may be assumed to originate from the connections only. This is allowable, provided that all of A
the following conditions are satisfied: A

a) Ahe Aonnections Aave Aotation Aapacity Aufficient Aor Ahe Aorresponding Aleformation A
demands; A

b members framing into the connections are demonstrated to be stable at the ULS; A

¢) the effect of connection deformations on global drift is taken into account. A

A

4.5.4.3 — When partial strength connections are used for the seismic links, the capacity design A
of the other elements in the structure should be derived from the plastic capacity of the links A
connections. A

P i g S i
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4.6. DESIGN RULES FOR STEEL BUILDINGS WITH CONCRETE CORES OR A
CONCRETE WALLS A

A

4.6.1 — The steel elements shall be verified in accordance with this Chapter and EN 1993, A

while the concrete elements shall be designed in accordance with Chapter 3. A

A

4.6.2 A Ahe Alements An Avhich An Anteraction Aetween Ateel And Aoncrete Axists Ahall Ae A

verified in accordance with Chapter 5. A

> >
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4.7. DESIGN RULES FOR INVERTED PENDULUM STRUCTURES A
A
4.7.1 — In inverted pendulum structures defined in 4.1.3.1), the columns should be verified in A
compression considering the most unfavourable combination of the axial force and bending A
moments. A
A
4.7.2 — In the checks, Ng4, M4, Viqshould be computed as in 4.3.3. A
A

4.7.3 — The non-dimensional slenderness of the columns should be limited to A < 1,5. A



CHAPTERS A
SEISMIC DESIGN REQUIREMENTS FOR A

STEEL — CONCRETE COMPOSITE BUILDINGS A
A
5.1. SCOPE AND DESIGN CONCEPTS A
A
5.1.1. Scope A
A
5.1.1.1 — This Chapter applies to the seismic design of elements of composite steel-concrete A
buildings. A
A
5.1.1.2 — The rules given in this Chapter are additional to those given in EN 1994-1-1:2004. A
A
5.1.1.3 — Except where modified by the provisions of this Chapter, the provisions of Chapters A
3 and 4 apply. A
A
5.1.2. Design Concepts A
A
5.1.2.1 — Earthquake resistant composite buildings shall be designed in accordance with one A
of the following design concepts (see Table 5.1): A

a) Concept A: Low-dissipative structural behaviour. A
b Concept B: Dissipative structural behaviour with composite dissipative zones; A

¢) Concept C: Dissipative structural behaviour with steel dissipative zones. A
A
Table 5.1. Design concepts of composite buildings A

Structural A| Behaviour A
ductility class | factor q A

: Low dissipative structural behaviour A DCL A 1.0A

Design concept A

B or C: Dissipative structural behaviour A DCN A <50A

A

5.1.2.2 — In concept A, the action effects may be calculated on the basis of an elastic analysis A
without taking into account non-linear material behaviour but considering the reduction in the A
moment of inertia due to the cracking of concrete in part of the beam spans, in accordance A
with the general structural analysis rules defined in 5.2 and to the specific rules defined in 5.5 A
to 5.9 related to each structural type. Behaviour factor shall be takenas q=1. A

A

5.1.2.3 A An Aoncept A Ahe Aesistance Af Ahe Anembers And Af Ahe Aonnections Ahould Ae A
evaluated in accordance with EN 1993 and EN 1994 without any additional requirements. A

A

5.1.2.4 — In concepts B and C, the capability of parts of the structure (dissipative zones) to A
resist earthquake actions through inelastic behaviour is taken into account. Behavior factor A
shall be taken from Table 5.2. When adopting concepts B or C the requirements given in 5.2 A
to 5.9 should be fulfilled. A

A

5.1.2.5 — In concept C, structures are not meant to take advantage of composite behaviour in A
dissipative Zones; Ahe Application Af &Aoncept A As Aonditioned Ay A Atrict Aompliance Ao A
measures that prevent involvement of the concrete in the resistance of dissipative zones. In A

A 66



A

concept C the composite structure is designed in accordance with EN 1994-1-1:2004 under A
non-seismic Aoads And An Accordance Avith AChapter 4 to Aesist &arthquake Action. A'he A
measures preventing involvement of the concrete are given in 5.5.5. A

A

5.1.2.6 A A'he Alesign Aules Aor Alissipative Aomposite Atructures Aconcept B , Aim At Ahe A
development of reliable local plastic mechanisms dissipative zones) in the structure and of a A
reliable global plastic mechanism dissipating as much energy as possible under the design A
earthquake Action. Aor &ach Atructural Alement Ar Aach Atructural Aype Aonsidered An Ahis A
Chapter, rules allowing this general design objective to be achieved are given in 5.5 to 5.9 A
with reference to what are called the specific criteria. These criteria aim at the development of A
a global mechanical behaviour for which design provisions can be given. A

A

5.1.2.7 — Structures designed in accordance with concept B shall belong to structural ductility A
class Adentified As AVormal fDuctility fClass ADCN). Al'his Aluctility Alass Aorresponds Ao A
increased Ability Af Ahe Atructure Ao Alissipate &nergy An Alastic Anechanisms, Aor Avhich A
composite seismic design requirements are given in the remainder of Chapter 5. A

A

5.1.3. Structural types and Behaviour Factors A
A

5.1.3.1 A Lomposite Ateel-concrete Atructures Ahall e Assigned Ao Ane Af Ahe Aollowing A
structural types according to the behaviour of their primary resisting structure under seismic A
actions: A

a) Composite moment resisting frames are those with the same definition and limitations as A
in 4.1.3.1(a), but in which beams and columns may be either structural steel or composite A
steel-concrete. A

b Composite concentrically braced rames are those with the same definition and limitations A
as An 4.1.3.1(b). Lolumns And Aeams Anay Ae Aither Atructural Ateel Ar Aomposite Ateel-A
concrete. Braces shall be structural steel. A

¢) AComposite feccentrically fbraced f rames Aare Athose Awith Athe Asame Adefinition Aand A
configurations as in 4.1.3.1(¢c). The members which do not contain the links may be either A
structural Ateel Ar Aomposite Ateel-concrete. ther Ahan Aor Ahe Alab, Ahe Ainks Ahall Ae A
structural steel. Energy dissipation shall occur only through yielding in bending or shear of A
these links. A

d Inverted pendulum structures, have the same definition and limitations as in 4.1.3.1(i). A

e) Composite structural systems are those which behave essentially as reinforced concrete A
walls. The composite systems may belong to one of the following types: A

— Type 1 corresponds to a steel or composite frame working together with concrete infill A
panels connected to the steel structure; A

— Type 2 is A Aeinforced Aoncrete Avall in Avhich Ancased Ateel Aections Aonnected to the A
concrete structure are used as vertical edge reinforcement; A

— Type 3, steel or composite beams are used to couple two or more reinforced concrete or A
composite walls. A

f Composite steel plate shear walls are those consisting of a vertical steel plate continuous A
over the height of the building with reinforced concrete encasement on one or both faces of A
the plate and of the structural steel or composite boundary members. A



A

5.1.3.2 — In all types of composite structural systems the energy dissipation takes place in the A
vertical steel sections and in the vertical reinforcements of the walls. In type 3 composite A
structural systems, energy dissipation may also take place in the coupling beams. A

A

5.1.3.3 — If, in composite structural systems the wall elements are not connected to the steel A
structure, Chapters 3 and 4 apply. A

A

5.1.3.4 — The behaviour factor g shall be taken from Table 4.1 or Table 5.2 as indicated in A
the latter, provided that the rules in 5.3 to 5.9 are met. A

A
Table 5.2. Behaviour Factors ¢ for composite structural types A
Structural type A qf
Composite moment resisting frame system A 5.0A
Composite eccentrically braced frame system A 5.0A
Composite concentrically braced frame system Al 3.5 A
Frame-dominant dual system A 4.0 A
Braced frame-dominant dual system (eccentric A| 4.0 A
bracing A A
Braced frame-dominant dual system (concentric A 3 5 A
bracing A A
Inverted pendulum system A 1.5A
Composite walls (Type 1 and Type 2) A 35A
Composite or concrete walls coupled by steel A A
or composite beams (Type 3) A 35A
Composite steel plate structural walls A 35A
A

5.1.4. Material requirements A

A

5.1.4.1 — In dissipative zones, the prescribed concrete class should not be lower than C20/25. A
If the concrete class is higher than C40/50, the design is not within the scope of EN 1998-1. A

A

5.1.4.2 — For Auctility Alass DCN Ahe Aeinforcing Ateel Aaken Anto Account An Ahe Alastic A
resistance of dissipative zones shall be of class B or C in accordance with EN 1992-1-1:2004 A
Table C.1. A

A

5.1.4.3 — Reinforcing steel of class B or C ( EN 1992-1-1:2004, Table C.1) shall be used in A
highly stressed regions of non dissipative structures. This requirement applies to both bars and A
welded meshes. A

A

5.1.4.4 — Except for closed stirrups or cross ties, only ribbed bars are allowed as reinforcing A
steel in regions with high stresses. A

A

5.1.4.5 — Welded meshes not conforming to the requirements of 5.1.4.2 shall not be used in A
dissipative zones. If such meshes are used, ductile reinforcement duplicating the mesh should A
be placed and their resistance capacity accounted for in the capacity analysis. A



A

A
5.1.4.6 — For structural steel, requirements given in 4.1.4 apply. A



A

5.2. STRUCTURAL ANALYSIS A

A

5.2.1. Scope A

A

The Aollowing Aules Apply Ao Ahe Analysis Af Ahe Atructure Ainder Aarthquake Action Avith A
Equivalent Seismic Load Method given in 2.3 and with the Multi-Mode Response Spectrum f
Analysis Method given in 2.4. A

A

5.2.2. Stiffness of sections A

A

5.2.2.1 — The stiffness of composite sections in which the concrete is in compression shall be A
computed using a modular ratio n given in Eq.(5.1). A

A n Ao -Za_g A 5.1) A

mA

5.2.2.2 — For composite beams with slab in compression, the second moment of area of the A
section, referred to as /;, shall be computed taking into account the effective width of slab A
defined in 5.4.3. A

A

5.2.2.3 — The stiffness of composite sections in which the concrete is in tension shall be A
computed assuming that the concrete is cracked and that only the steel parts of the section are A
active. A

A

5.2.2.4 — For composite beams with slab in tension, the second moment of area of the section, A
referred to as I, shall be computed taking into account the effective width of slab defined in A
543 A

A

5.2.2.5 — The structure should be analysed taking into account the presence of concrete in A
compression in some zones and concrete in tension in other zones; the distribution of the A
zones is given in 5.5 to 5.9 for the various structural types. A

> > > > > > > > > > > > >



A

5.3. DESIGN CRITERIA AND DETAILING RULES FOR DISSIPATIVE A
STRUCTURAL BEHAVIOUR COMMON TO ALL STRUCTURAL TYPES A

A

5.3.1. Design criteria for dissipative structures A

A

5.3.1.1 — Dissipative zones shall have adequate ductility and resistance. The resistance shall A

be determined in accordance with EN 1993-1-1:2004 and Chapter 4 for concept C, and to EN A

1994-1-1:2004 Aand AChapter A AXor Aconcept B Asee /.1.2.1). Muctility As Aachieved by A

compliance to detailing rules. A

A

5.3.1.2 — Dissipative zones may be located in the structural members or in the connections. A

a) If dissipative zones are located in the structural members, the non-dissipative parts and the A
connections Aof Ahe Adissipative Aparts Ao Ahe Aest Aof Ahe Atructure Ahall Aave Aufficient A
overstrength to allow the development of cyclic yielding in the dissipative parts. A

b When dissipative zones are located in the connections, the connected members shall have A

sufficient overstrength to allow the development of cyclic yielding in the connections. A
A

5.3.2. Plastic resistance of dissipative zones A

A

5.3.2.1 — Two plastic resistances of dissipative zones are used in the design of composite steel A
- concrete structures: a lower bound plastic resistance (index: pl,Rd) and an upper bound A
plastic resistance index: U,Rd). A

A

5.3.2.2 — The lower bound plastic resistance of dissipative zones is the one taken into account A
in design checks concerning sections of dissipative elements; e.g. Mgq < Mpira . The lower A
bound plastic resistance of dissipative zones is computed taking into account the concrete A
component of the section and only the steel components of the section which are classified as A
ductile. A

A

5.3.2.3 — The Aipper Aound Alastic Aesistance Af Alissipative Aones As Ahe Ane Aised An Ahe A
capacity design Af Alements Adjacent to the dissipative Aone: for instance in the Aapacity A
design verification of 4.3.1.2, the design values of the moments of resistance of beams are the A
upper bound plastic resistances, MyRrayp , Whereas those of the columns are the lower bound A
ones, Mpirdc- A

A

5.3.2.4 — The upper bound plastic resistance is computed taking into account the concrete A
component of the section and all the steel components present in the section, including those A
that are not classified as ductile. A

A

5.3.2.5 — Action effects, which are directly related to the resistance of dissipative zones, shall A
be determined on the basis of the upper bound resistance of composite dissipative sections; A
e.g. the design shear force at the end of a dissipative composite beam shall be determined on A
the basis of the upper bound plastic moment of the composite section. A

A

5.3.3. Detailing rules for composite connections in dissipative zones A

A

5.3.3.1 — For the design of welds and bolts, 4.2.3 applies. A

A



A

5.3.3.2 — In fully encased framed web panels of beam/column connections, the panel zone A
resistance may be computed as the sum of contributions from the concrete and steel shear A
panel, if all the following conditions are satisfied: A

A 0.6 <h,/h, <14 A 52) A
A Vippans 0-8A, ras A 53)A

where Ay, / he is the aspect ratio of the panel zone; where Vyy q 1s the design shear force in the A
web panel due to the action effects, taking into account the plastic resistance of the adjacent A
composite dissipative zones in beams or connections; Vy,ra is the shear resistance of the A
composite steel - concrete web panel in accordance with EN 1994-1-1:2004. A

A

5.3.3.3 — In partially encased stiffened web panels, an assessment similar to that in 5.3.3.2 is A
permitted if, in addition to the requirements of 5.3.3.4, one of the following conditions is A
fulfilled: A

a) Straight links of the type defined in 5.4.5.4 and complying with 5.4.5.5 and 5.4.5.6 arc A
provided at a maximum spacing s;= ¢ in the partially encased stiffened web panel; these links A
are Ariented Aerpendicularly Ao Ahe Aongest Aide Af Ahe Aolumn Aveb Avanel And Ao Ather A
reinforcement of the web panel is required; or A

b No reinforcement is present, provided that 4, / b, < 1,2 and h. / b, < 1,2. A

A

5.3.3.4 — When a dissipative steel or composite beam is framing into a reinforced concrete A
column, vertical column reinforcement with design axial strength at least equal to the shear A
strength of the coupling beam should be placed close to the stiffener or face bearing plate A
adjacent to the dissipative zone. It is permitted to use vertical reinforcement placed for other A
purposes as part of the required vertical reinforcement. The presence of face bearing plates is A
required; they should be full depth stiffeners of a combined width not less than b, — 2 ¢ ; their A
thickness should be not less than 0,75 ¢ or 8 mm; b, and ¢ are respectively the beam flange A
width and the panel web thickness. A

A

5.3.3.5 — When A Alissipative Ateel Ar Aomposite heam As Araming Anto A Aully Ancased A
composite Aolumn, Ahe Aeam Aolumn Aonnection Anay be Aesigned Aither As A Aeam/steel A
column Aonnection Ar A Aeam/composite Aolumn Aonnection. An Ahe Aatter Aase, Aertical A
column reinforcements may be calculated either as in 5.3.3.4 or by distributing the shear A
strength of the beam between the column steel section and the column reinforcement. In both A
instances, the presence of face bearing plates as described in 5.3.3.4 is required. A

A
5.3.3.6 — The Aertical Aolumn Aeinforcement Apecified An 4.3.3.4 and 4.3.3.5 should Ae A
confined by transverse reinforcement that meets the requirements for members defined in 5.4. A

> > > >
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5.4. RULES FOR MEMBERS A

A

5.4.1. General A

A

5.4.1.1 — Composite members, which are primary seismic members, shall conform to EN A
1994-1-1:2004 and to additional rules defined in this Section. A

A

5.4.1.2 — For tension members or parts of members in tension, the ductility requirement of EN A
1993-1-1:2004, 6.2.3(3) should be met. A

A

5.4.1.3 — Sufficient local ductility of members Avhich dissipate energy Ander compression A
and/or bending should be ensured by restricting the width-to-thickness ratios of their walls. A
Steel dissipative zones and the not encased steel parts of composite members should meet the A
requirements Af 4.2.1.1 and A'able 4.2. Dissipative &Zones Af Ancased Aomposite Anembers A
should meet the requirements of Table 5.3. The limits given for flange outstands of partially A
or fully Ancased Anembers Anay be Aclaxed if Apecial details Are provided As described in A
5.4.4.9 and 5.4.5.4 t0 5.4.5.6. A

A
Table 5.3. Limits of wall slenderness A
. Wall A
Section type A slenderness A
Partially encased H or I section A A
Fully encased H or I section A A
Flange outstand limits ¢/ #: A 14 A
Filled rectangular section A A
h/t limits: A 38 A
Filled circular section A A2 N
d/t limits: A 85¢
A

where e (A/ 235)%° A

A

5.4.1.4 — More specific detailing rules for dissipative composite members are given in 5.4.2, A
5.4.4,5.4.5 and 5.4.6. A

A

5.4.1.5 — In the design of all types of composite columns, the resistance of the steel section A
alone or the combined resistances of the steel section and the concrete encasement or infill A
may be taken into account. A

A

5.4.1.6 — The design of columns in which the member resistance is taken to be provided only A
by the steel section may be carried out in accordance with the provisions of Chapter 4. In the A
case Af Alissipative Aolumns, Ahe Aapacity Alesign Aules An A4.3.1.2 and 4.3.2.3 should ke A
satisfied. A

A

5.4.1.7 — For fully encased columns with composite behaviour, the minimum crosssectional A
dimensions b, & or d should be not less than 250 mm. A

A



A

5.4.1.8 — The resistance, including shear resistance, of non-dissipative composite columns A
should be determined in accordance with the rules of EN 1994-1-1:2004. A

A

5.4.1.9 — In columns, when the concrete encasement or infill are assumed to contribute to the A
axial and/or flexural resistance of the member, the design rules in 5.4.4 to 5.4.6 apply. These A
rules ensure full shear transfer between the concrete and the steel parts in a section and protect A
the dissipative zones against premature inelastic failure. A

A

5.4.1.10 — For earthquake-resistant design, the design shear strength given in EN 1994-1-A
1:2004, Table 6.6, should be multiplied by a reduction factor of 0.5. A

A

5.4.1.11 — When, for capacity design purposes, the full composite resistance of a column is A
employed, complete shear transfer between the steel and reinforced concrete parts should be A
ensured. If insufficient shear transfer is achieved through bond and friction, shear connectors A
should be provided to ensure full composite action. A

A

5.4.1.12 — Wherever a composite column is subjected to predominately axial forces, sufficient A
shear transfer should be provided to ensure that the steel and concrete parts share the loads A
applied to the column at connections to beams and bracing members. A

A

5.4.1.13 — Except at their base in some structural types, columns are generally not designed to A
be dissipative. However, because of uncertainties in the behaviour, confining reinforcement is A
required in regions called critical regions as specified in 5.4.4. A

A

5.4.1.14 — 3.5.2.1 and 3.5.3 concerning anchorage and splices in the design of reinforced A
concrete columns apply also to the reinforcements of composite columns. A

A

5.4.2. Steel beams composite with slab A

A

5.4.2.1 — The design objective of this subclause is to maintain the integrity of the concrete A
slab during the seismic event, while yielding takes place in the bottom part of the steel section A
and/or in the rebars of the slab. A

A

5.4.2.2 — If it is not intended to take advantage of the composite character of the beam section A
for energy dissipation, 5.5.5 shall be applied. A

A

5.4.2.3 — Beams Antended Ao Achave As Aomposite Alements An Alissipative &Zones Af Ahe A
earthquake Aesistant Atructure Anay e Alesigned Xor Aull Ar Aartial Ahear Aonnection An A
accordance with EN 1994-1-1:2004. The minimum degree of connection 1 as defined in EN A
1994-1-1:2004 4.6.1.2 should Ae Aot Aess Ahan A.8 And Ahe Aotal Aesistance Af Ahe Ahear A
connectors Avithin Any hogging moment Aegion Aot less than the plastic Aesistance Af the A
reinforcement. A

A

5.4.2.4 — The design resistance of connectors in dissipative zones is obtained from the design A
resistance provided in EN 1994-1-1:2004 multiplied by a reduction factor of 0.75. A

A

5.4.2.5 — Full shear connection is required when non-ductile connectors are used. A

A

5.4.2.6 — When a profiled steel sheeting with ribs transverse to the supporting beams is used, A
the reduction factor k of the design shear resistance of connectors given by EN 1994-1-1 A



A

should be further reduced by multiplying it by the rib shape efficiency factor k. = 0.8 for the A

case of standard trapezoidal ribs. A

A

5.4.2.7 — To achieve ductility in plastic hinges, the ratio x/d of the distance x between the top A

concrete Aompression Aibre And Ahe Alastic Acutral Axis, Ao Ahe Alepth A of Ahe Aomposite A

section, should conform to the following expression: A

A XA Bann g 5.4) A
df  e@pat €aa

where g, is the ultimate compressive strain of concrete see EN 1992-1-1:2004); ¢, is the A
total strain in steel at Ultimate Limit State. A

A

5.4.2.8 — The rule in 5.4.2.7 is deemed to be satisfied when x/d of a section is less than the A
limits given in Table 5.4. A

Table 5.4. Limit values x/d for A
ductility of beams with slabs A

x/d A
Sy (MPa A upper limit A
355 A 0.27 A
235 A 0.36 A
A

5.4.3. Effective width of slab A

A

5.4.3.1 — The total Affective Avidth A of Aoncrete flange Associated Avith Aach Ateel Aveb A
should be taken as the sum of the partial effective widths b and b, of the portion of the A
flange on each side of the centreline of the steel web. The partial effective width on each side A
should be taken as b, given in Table 5.5, but not greater than the actual available widths b, o

and b, defined in 5.4.3.2. A
A

5.4.3.2 — The actual width b of each portion should be taken as half the distance from the web A
to the adjacent web, except that at a free edge the actual width is the distance from the web to A
the free edge. A
A
5.4.3.3 — The partial effective width b aof the slab to be used in the determination of the A
elastic and plastic properties of the composite 7" sections made of a steel section connected to A
a slab are defined in Table 5.5. A
A

Table 5.5 — 1. Partial effective width b, of slab for elastic analysis A

b A Transverse element A b. for I (elastic) A

t interior column A Present or not present A | For negative M: 0.05 [ f

>

t exterior column 4 Present A For positive M: 0.03751 4

Not present, A For negative M: 0 f

t exterior column 4 ..
or rebars not anchored A | For positive M: 0.025 7 A




Table 5.5 — I1. Partial effective width b, of slab for evaluation of plastic moment A
resistance A

Sign of bending . b for Mrq A
moment M A Location | Transverse element A plastic A
Negative M A Interior A Seismic re-bars A 0.17A

column A
Negative M A Exterior A| 11 layouts with re-bars a}nchored to fag;ade A 011A
column A | beam or to concrete cantilever edge strip A
Exterior A 11 layouts with re-bars not anchored to A
Negative M A facade beam or to concrete cantilever edge A 0A
column A| .
strip A
Positive M A Interior A Seismic re-bars A 0.0757 A
column A
Steel transverse beam with connectors. A
" Exterior A] Concrete slab up to exterior face of column A
Positive M A column A | of H section with strong axis or beyond A 0.075 1A
(concrete edge strip). Seismic re-bars A
No steel transverse beam or steel transverse A
Exterior Al beam without connectors. A by/2 A
Positive M A column A Concrete slab up to exterior face of column A +A
of H section with strong axis or beyond A 0.7 he/2 A
(edge strip). Seismic re-bars A
.. Exterior Al . by/2 < bemax A
Positive M A column A 11 other layouts. Seismic re-bars A Demn=0.05 1 |

A

5.4.4. Fully encased composite columns A

A

5.4.4.1 — In dissipative structures, critical regions are present at both ends of all column clear A
lengths in moment frames and in the portion of columns adjacent to links in eccentrically A
braced frames. The lengths /. of these critical regions (in metres are specified by Eq.(3.12), A
with /¢ in these expressions denoting the depth of the composite section (in metres). A

A

5.4.4.2 — To satisfy plastic rotation demands and to compensate for loss of resistance due to A
spalling of cover concrete, the following expression should be satisfied within the critical A
regions defined above: A

A oo, 30 u(pyd/jgg&)’dA];—j:A—d).O% A 5.5) A
A

in which confinement effectiveness factor a is as defined in 3.3.3.6 and the normalised design A
axial force vy4is defined as: A

_ AjVEdAA

N
A EdA
A VdA £

Npraa Al yasrelf sl g

5.4.4.3 — The spacing, s, (in millimetres) of confining hoops in critical regions should not A
exceed A

A s Aemin {bfj2 , 260, 9df; § A 57) A
/

5.6) A



A

where b, is the minimum dimension of the concrete core (to the centreline of the hoops, in A
millimetres); dyr is the minimum diameter of the longitudinal rebars (in millimetres). A

A

5.4.4.4 — The diameter of the hoops shall be at least dyy, = 6 mm. A

A

5.4.4.5 — In critical regions, the distance between consecutive longitudinal bars restrained by A
hoop bends or cross-ties should not exceed 250 mm. A

A

5.4.4.6 — In the lower two storeys of a building, hoops in accordance with 5.4.4.3, 5.4.4.4 and A
5.4.4.5 shall be provided beyond the critical regions for an additional length equal to half the A
length of the critical regions. A

A

5.4.4.7 — In dissipative composite columns, the shear resistance should be determined on the A
basis of the structural steel section alone. A

A

5.4.4.8 — The Aelationship Aetween Ahe Aluctility Alass Af Ahe Atructure And Ahe Allowable A
slenderness (c/ty) of the flange outstand in dissipative zones is given in Table 5.3. A

A

5.4.4.9 — Confining hoops can delay local buckling in the dissipative zones. The limits given A
in Alable 5.3 Aor Alange Alenderness Anay e Ancreased Af Ahe Aoops Are Arovided At A A
longitudinal spacing, s, which is less than the flange outstand: s/c < 1.0. For s/c < 0.5 the A
limits given in Table 5.3 may be increased by up to 50%. For values of 0.5 < s/c < 1.0 linear A
interpolation may be used. A

A

5.4.4.10 — The diameter dyy of confining hoops used to prevent flange buckling shall be not A
less than A

A PR LS TIN 5.8) A
8A ydwA

in which b and # are the width and thickness of the flange, respectively, and Agr and Aqw are A
the design yield strengths of the flange and reinforcement, respectively. A

A

5.4.5. Partially-encased members A

A

5.4.5.1 — In dissipative zones where energy is dissipated by plastic bending of a composite A
section, Ahe Aongitudinal Apacing Af Ahe Aransverse Aeinforcement, A, Ahould Aatisfy Ahe A
requirements of 5.4.4.3 over a length greater or equal to /cr for dissipative zones at the end of a A
member and 2/cr for dissipative zones in the member. A

A

5.4.5.2 — In dissipative members, the shear resistance should be determined on the basis of the A
structural Ateel Aection Alone, Ainless Apecial Aletails Are Arovided Ao Anobilise Ahe Ahear A
resistance of the concrete encasement. A

A

5.4.5.3 — The allowable slenderness c¢/f) of the flange outstand in dissipative zones is as given A
in Table 5.3. A

A

5.4.5.4 — Straight links welded to the inside of the flanges, as additional to the reinforcements A
required by EN 1994-1-1, can delay local buckling in the dissipative zones. In this case, the A
limits given in Table 5.3 for flange slenderness may be increased if these bars are provided at A
a longitudinal spacing, s; , which is less than the flange outstand: s;/c < 1.0. For s5,/c < 0.5 the A
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A

limits given in Table 5.3 may be increased by up to 50%. For values of 0.5 <s/c < 1.0 linear A
interpolation may be used. The additional straight links should also conform to the rules in A
5.4.5.5and 5.4.5.6. A

A

5.4.5.5 — The diameter, dy, , of the additional straight links referred to in 5.4.5.4 should be at A
least 6 mm. When transverse links are employed to delay local flange buckling as described in A
5.4.5.4, dy,, should be not less than the value given by Eq.(5.8). A

A

5.4.5.6 — The additional straight links referred to in 5.4.5.4 should be welded to the flanges at A
both ends and the capacity of the welds should be not less than the tensile yield strength of the A
straight links. A clear concrete cover of at least 20 mm, but not exceeding 40 mm, should be A
provided to these links. A

A

5.4.5.7 — The Aesign Af Apartially-encased Aomposite Anembers Anay Aake Anto Account Ahe A
resistance of the steel section alone, or the composite resistance of the steel section and of A
concrete encasement. A

A

5.4.5.8 — The design of partially-encased members in which only the steel section is assumed A
to contribute to member resistance may be carried out in accordance with the provisions of A
Chapter 4, but the capacity design provisions of 5.3.1.2 and 5.3.2.3 should be applied. A

A

5.4.6. Filled composite columns A

A

5.4.6.1 — The allowable slenderness d/t or A/t is as given in Table 5.3. A

A

5.4.6.2 — The shear resistance of dissipative columns should be determined on the basis of the A
structural steel section or on the basis of the reinforced concrete section with the steel hollow A
section taken only as shear reinforcement. A

A

5.4.6.3 A- An Aon-dissipative Amembers, Ahe Ahear Aesistance Af Ahe Acolumn Ahould e A
determined in accordance with EN 1994-1-1. A

> > > > > > > > > > >



A

5.5. DESIGN AND DETAILING RULES FOR MOMENT FRAMES A

£5.1. Specific criteria A

51?5.1.1 —4.3.1.1 applies. A

5é5.1.2 — The composite beams shall be designed for ductility and so that the integrity of the A
concrete is maintained. A

A

5.5.1.3 — Depending on the location of the dissipative zones, either 5.3.1.2(a) or 5.3.1.2(b) A
applies. A

A

5.5.1.4 — The required hinge formation pattern should be achieved by observing the rules A
given in 4.3.1.2, 5.5.3, 5.5.4 and 5.5.5. A

A

5.5.2. Analysis A

A

5.5.2.1 — The analysis of the structure shall be performed on the basis of the section properties A
defined in 5.2. A

A

5.5.2.2 — In beams, two different flexural stiffnesses should be taken into account: £/, for the A
part of the spans submitted to positive sagging bending uncracked section) and EI, for the A
part of the span submitted to negative hogging bending (cracked section). A

A

5.5.2.3 — The analysis may alternatively be performed taking into account for the entire beam A
an equivalent second moment of area /.4 constant for the entire span: A

A ;= 0.6 If +0.4 If, A 5.9) A

5.5.2.4 — For composite columns, the flexural stiffness is given by: A

A EI =09 (EI,+0.5E, [.+EL) A 5.10) A

Where E and E., are the modulus of elasticity for steel and concrete respectively; I, , I, and /s a
denote the second moment of area of the steel section, of the concrete and of the rebars A
respectively. A

A

5.5.3. Rules for beams and columns A

A

5.5.3.1 — Composite T beam design shall conform to 5.4.2. Partially encased beams shall A
conform to 5.4.5. A

A

5.5.3.2 — Beams shall be verified for lateral and lateral torsional buckling in accordance with A
EN 1994-1-1, assuming the formation of a negative plastic moment at one end of the beam. A

A

5.5.3.3 —4.3.2.2 applies. A

A

5.5.3.4 — Composite trusses should not be used as dissipative beams. A
A

5.5.3.5-4.3.3.1 applies. A

A



A

5.5.3.6 — In columns where plastic hinges form as stated in 5.5.1.1, the verification should A
assume that M, rq 1s realised in these plastic hinges. A

A

5.5.3.7 — The following expression should apply for all composite columns: A

A EA 930 A 5.11) A

5.5.3.8 — The resistance verifications of the columns should be made in accordance with EN A
1994-1-1:2004, 4.8. A

A

5.5.3.9 — The column shear force Vg4 from the analysis) should be limited in accordance with A
third expression in Eq.(4.4). A

A

5.5.4. Beam to column connections A

A

The provisions given in 4.3.4 apply. A

A

5.5.5. Condition for disregarding the composite character of beams with slab A

A

5.5.5.1 — The plastic resistance of a beam section composite with slab (lower or upper bound A
plastic resistance of dissipative zones) may be computed taking into account only the steel A
section Adesign An Accordance Avith Loncept A As Alefined An A.1.2 Af Ahe Alab As Aotally A
disconnected from the steel frame in a circular zone around a column of diameter 2bqs, with A
ber being the larger of the effective widths of the beams connected to that column. A

A

5.5.5.2 — For the purposes of 5.5.5.1, totally disconnected means that there is no contact A
between Alab And Any Arertical Aide Af Any Ateel Alement (e.g. Aolumns, Ahear Aonnectors, A
connecting plates, corrugated flange, steel deck nailed to flange of steel section). A

A

5.5.5.3 — In partially encased beams, the contribution of concrete between the flanges of the A
steel section should be taken into account. A

B> > > > > > >
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5.6. DESIGN AND DETAILING RULES FOR COMPOSITE CONCENTRICALLY A
BRACED FRAMES A

A

5.6.1. Specific criteria A

A

5.6.1.1 — 4.4.1.1 applies. A

A

5.6.1.2 — Columns and beams shall be either structural steel or composite. A

A

5.6.1.3 — Braces shall be structural steel. A

A

5.6.1.4 — 4.4.1.2 applies. A

A

5.6.2. Analysis A

A

The provisions given in 4.4.2 apply. A

>

5.6.3. Diagonal members A

e provisions given in 4.4.3 apply. A

> 2>

wn

.6.4. Beams and columns A

e provisions given in 4.4.4 apply. A
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5.7. DESIGN AND DETAILING RULES FOR COMPOSITE ECCENTRICALLY A
BRACED FRAMES A

A

5.7.1. Specific criteria A

A

5.7.1.1 — Composite frames with eccentric bracings shall be designed so that the dissipative A

action Avill Accur Assentially through yielding in bending Ar Ahear Af the links. A 11 Ather A

members shall remain elastic and failure of connections shall be prevented. A

A

5.7.1.2 — Columns, beams and braces shall be either structural steel or composite. A

A

5.7.1.3 — The braces, columns and beam segments outside the link segments shall be designed A

to remain elastic under the maximum forces that can be generated by the fully yielded and A

cyclically strain-hardened beam link. A

A

5.7.2. Analysis A

A

5.7.2.1 — The analysis of the structure is based on the section properties defined in 5.2.2. A

A

5.7.2.2 — In beams, two different flexural stiffnesses are taken into account: £/, for the part of A

the spans submitted to positive sagging bending uncracked section) and EI, for the part of A

the span submitted to negative hogging) bending (cracked section). A

A

5.7.3. Seismic links A

A

5.7.3.1 — Links shall be made of steel sections, possibly composite with slabs. They may not A

be encased. A

A

5.7.3.2 — The rules on seismic links and their stiffeners given in 4.5.2 apply. Links should be A

of short or intermediate length with a maximum length e. A

a) In structures where two plastic hinges would form at link ends: A

M.
e =@ALIA A 5.12) A
Vp,linkA

(b) In structures where one plastic hinge would form at one end of a link: A

M.
e <o A 5.13) A
p,linkA

The definitions of M, jink and V,, jink are given in 4.5.2.3. For M, jin , only the steel components A
of the link section, disregarding the concrete slab, are taken into account in the evaluation. A

A

5.7.3.3 — When the seismic link frames into a Aeinforced Aoncrete A&olumn or an encased A
column, face bearing plates should be provided on both sides of the link at the face of the A
column and in the end section of the link. A

A

5.7.3.4 — Connections should meet the requirements of the connections of eccentrically braced A
steel frames as in 4.5.4. A

A

A
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A

5.7.4. Members not containing seismic links A

A

5.7.4.1 — The members not containing seismic links should conform to the rules in 4.5.3, A
taking into account the combined resistance of steel and concrete in the case of composite A
elements and the relevant rules for members in 5.4 and in EN 1994-1-1:2004. A

A

5.7.4.2 A- AWhere A Aink As Adjacent Ao A Aully Ancased Acomposite Aolumn, Aransverse A
reinforcement meeting the requirements of 5.4.4 should be provided above and below the link A
connection. A

A

5.7.4.3 — In case of a composite brace under tension, only the cross-section of the structural A
steel section should be taken into account in the evaluation of the resistance of the brace. A
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5.8. DESIGN AND DETAILING RULES FOR STRUCTURAL SYSTEMS MADE OF A
REINFORCED CONCRETE STRUCTURAL WALLS COMPOSITE WITH A
STRUCTURAL STEEL ELEMENTS A

A

5.8.1. Specific criteria A

A

5.8.1.1 — The provisions in this subclause apply to composite structural systems belonging in A

one of the three types defined in 5.1.3.1(e). A

A

5.8.1.2 — Structural system Types 1 and 2 shall be designed to behave as structural walls and A

dissipate energy in the vertical steel sections and in the vertical reinforcement. The infills A

shall be tied to the boundary elements to prevent separation. A

A

5.8.1.3 — In structural system Type 1, the storey shear forces shall be carried by horizontal A

shear in the wall and in the interface between the wall and beams. A

A

5.8.1.4 — Structural system Type 3 shall be designed to dissipate energy in the structural walls A

and in the coupling beams. A
A

5.8.2. Analysis A

A

5.8.2.1 — The analysis of the structure shall be based on the section properties defined in A
Chapter 3 for concrete walls and in 5.2.2 for composite beams. A

A

5.8.2.2 — In structural systems of Type 1 or Type 2, when vertical fully encased or partially A
encased structural steel sections act as boundary members of reinforced concrete infill panels, A
the analysis shall be made assuming that the seismic action effects in these vertical boundary A
elements are axial forces only. A

A

5.8.2.3 — These axial forces should be determined assuming that the shear forces are carried A
by the reinforced concrete wall and that the entire gravity and overturning forces are carried A
by the shear wall acting compositely with the vertical boundary members. A

A

5.8.2.4 — In structural system of Type 3, if composite coupling beams are used, 5.5.2.2 and A
5.5.2.3 apply. A

A

5.8.3. Detailing rules for composite walls A

A

5.8.3.1 — The reinforced concrete infill panels in Type 1 and the reinforced concrete walls in A
Types 2 and 3 shall meet the detailing requirements of Chapter 3. A

A

5.8.3.2 — Partially encased steel sections used as boundary members of reinforced concrete A
panels shall belong to a class of cross-section indicated in Table 5.3. A

A

5.8.3.3 — Fully Ancased Atructural Ateel Aections Ased As boundary Anembers in Aeinforced A
concrete panels shall be designed in accordance with 5.4.4. A

A

5.8.3.4 — Partially encased structural steel sections used as boundary members of reinforced A
concrete panels shall be designed in accordance with 5.4.5. A

A



A

5.8.3.5 — Headed shear studs or tie reinforcement (welded to, anchored through holes in the A
steel members or anchored around the steel member) should be provided to transfer vertical A
and horizontal shear forces between the structural steel of the boundary elements and the A
reinforced concrete. A

A

5.8.4. Detailing rules for coupling beams A

A

5.8.4.1 — Coupling beams shall have an embedment length into the reinforced concrete wall A
sufficient Ao Aesist Ahe Aost Adverse Aombination Af moment And Ahear Aenerated Ay Ahe A
bending and shear strength of the coupling beam. The embedment length /e shall be taken to A
begin inside the first layer of the confining reinforcement in the wall boundary member. The A
embedment length /c shall be not less than 1,5 times the height of the coupling beam. A

A

5.8.4.2 — The vertical wall reinforcements, defined in 5.3.3.4 and 5.3.3.5 with design axial A
strength A&qual Ao Ahe Ahear Atrength Af Ahe Aoupling deam, Ahould Ae Alaced Aver Ahe A
embedment length of the beam with two-thirds of the steel located over the first half of the A
embedment length. This wall reinforcement should extend a distance of at least one anchorage A
length Above And below the flanges Af the Aoupling beam. It is permitted to Aise Aertical A
reinforcement placed for other purposes, such as for vertical boundary members, as part of the A
required vertical reinforcement. Transverse reinforcement should conform to 5.4. A
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5.9. DESIGN AND DETAILING RULES FOR COMPOSITE STEEL PLATE A
STRUCTURAL WALLS A

A

5.9.1. Specific criteria A

A

5.9.1.1 — Composite steel plate shear walls shall be designed to yield through shear of the A

steel plate. A

A

5.9.1.2 — The steel plate should be stiffened by one or two sided concrete encasement and A

attachment to the reinforced concrete encasement in order to prevent buckling of steel. A

A

5.9.2. Analysis A

A

The analysis of the structure should be based on the materials and section properties defined A

in5.2.2 and 54. A

£9.3. Detailing rules A
$9.3.1 — It shall be checked that A
VEA<oVEy, A 5.14) A
with the shear resistance given by: A
Veeolf = A 5.15) A
NEY.

where Aq 1s the design yield strength of the plate and A4, is the horizontal area of the plate. A

A

5.9.3.2 — The connections between the plate and the boundary members (columns and beams), A
as well as the connections between the plate and the concrete encasement, shall be designed A
such that full yield strength of the plate can be developed. A

A

5.9.3.3 — The Ateel plate Ahall be Aontinuously Aonnected An All Adges to Atructural Ateel A
framing and boundary members with welds and/or bolts to develop the yield strength of the A
plate in shear. A

A

5.9.3.4 — The boundary members shall be designed to meet the requirements of 5.8. A

A

5.9.3.5 — The concrete thickness should be not less than 200 mm when it is provided on one A
side and 100 mm on each side when provided on both sides. A

A
5.9.3.6 — The minimum reinforcement ratio in both directions shall be not less than 0,25%. A

A

5.9.3.7 — Openings in the steel plate shall be stiffened as required by analysis. A

> > > >



CHAPTER 6 A
PERFORMANCE-BASED SEISMIC DESIGN REQUIREMENTS A
FOR TALL BUILDINGS A
A
6.1. ANALYSIS PROCEDURES FOR TALL BUILDINGS A
A

6.1.1 — In the linear elastic analysis of tall buildings required for design stages described in A
6.3.1 and 6.3.3, Multi-mode Response Spectrum Analysis procedure described in 2.4 or Linear f
Response History Analysis procedure described in 2.5.1 shall be employed. A

A

6.1.2 — In the nonlinear analysis of tall buildings required for design stages described in 6.3.2 A
and 6.3.4, Direct Integration procedure shall be employed in the time domain. A

A

6.1.3 — In nonlinear analysis, a minimum seven earthquake ground motion sets shall be used A
in accordance with 1.2.3 and the acceleration records in the two perpendicular directions shall A
be applied simultaneously along the principal axes of the structural system. Subsequently A
directions of acceleration records shall be rotated by 90° and the analysis shall be repeated. A
Design basis seismic demands shall be calculated as the average of results obtained from the A
minimum 2*7 = 14 analysis. A

A

6.1.4 — In the linear Ar Aonlinear Analysis Af tall buildings, damping Aatio Ahall be taken

£ =0.05 as a maximum. Second order (P — A) effects shall be taken into account. A

A

6.1.5 — In the cases where needed, vertical component of the earthquake ground motion may A
be considered as well, subject to approval of the Independent Reviewer s . A
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A

6.2. REQUIREMENTS FOR ANALYSIS MODELING A

A

6.2.1 — Modeling Af Arame Alements Ahall Ae Anade Avith Arame finite elements An Ainear A
analysis. Modeling in nonlinear analysis can be made with plastic sections plastic hinges in A
the framework of lumped plasticity approach or through Aber elements in the framework of A
distributed plasticity approach. Regarding the plastic hinge length, an appropriate empirical A
relationship Anay Ae Aclected Arom Ahe Aiterature, Aubject Ao Approval Af Ahe Andependent f
Reviewer s . In nonlinear analysis, alternative modeling approaches may be followed upon the A
approval of Independent Reviewer s . In linear and nonlinear models of steel frames, shear A
deformation in the beam-column panel zone shall be considered. A

A

6.2.2 — In linear analysis, modeling of reinforced concrete walls and their parts shall be made A
with shell finite elements. In simple walls, frame elements may be used as an alternative. A
When shell elements are used, elastic modulus FE) of shell elements can be appropriately A
reduced in bending in order to be consistent with the ef ective bending rigidities of the frame A
elements with cracked sections (see 6.2.4 . A

A

6.2.3 — In modeling reinforced concrete walls and their parts for nonlinear analysis, Aiber f
elements Ar Alternative Anodeling Aptions Anay e Aised An Ahe Aramework Af Alistributed A
plasticity approach, subject to approval of the Independent Reviewer s . Shear stiffnesses of A
reinforced concrete walls shall be considered. A

A

6.2.4 — Effective bending rigidities shall be used for reinforced concrete frame elements with A
cracked sections. In the preliminary design stage described in 6.3.1, empirical relationships A
given An Ahe Aelevant Aiterature Anay Ae Atilized. An Ather Alesign And Acerification Atages A
described in 4.3, effective bending Aigidity Ahall be obtained from the Aection’s Anoment-A
curvature relationship as follows: A

A R N o1 A
¢yA 4)9;\

where A/, represents the state of first-yield in the section. The corresponding curvature g
represents a state where either concrete strain attains a value of 0.002 or steel strain reaches A
the yield value, whichever occurs first. The nominal plastic moment A/, corresponding to A
effective yield curvature &g is calculated with concrete compressive strain reaching 0.004 or A
steel strain attaining 0.015, whichever occurs first. In calculating the moment strengths of A
columns, axial forces due to gravity loads only may be considered. A

A

6.2.5 — In preliminary design Atage described in 6.3.1, design Atrengths, A, Af &oncrete, A
reinforcing steel and structural steel are defined as the relevant characteristic strengths, A), A
divided by material safety factors. In other design and verification stages in 6.3, expected A
strentghs, A A, shall be used as design strengths without any material safety factors. The A
following relationships may be considered between the expected and characteristic strengths: A

Concrete Aa 1.3A44
Reinforcing steel Aep 1.17Ay,
A Structural steel (S 235) Acp 1.5A4n A 6.2) A

Structural steel (S 275) Acn 1.3A40
Structural steel (S 355) Acn 1.1AL
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A

6.2.6 — Bi-linear backbone curves may be considered in hysteretic relationships of plastic A
sections plastic hinges of frame elements. Stiffness and strength degradation effects shall be A
considered upon the approval of Independent Reviewer s . A

A

6.2.7 — At floor levels where abrupt changes in particular downward changes occur in lateral A
stiffness of vertical structural elements, a special care shall be paid for the arrangement of A
appropriate trans er floors with sufficient in-plane stiffness and strength. A

A

6.2.8 — The stiffness of the foundation and the soil medium shall be considered by appropriate A
models to be approved by the Independent Reviewer(s . When needed, nonlinear behaviour of A
soil-foundation system may be taken into account in design stages described in 6.3.2 and A
634. A
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A

6.3. PERFORMANCE-BASED SEISMIC DESIGN STAGES OF TALL BUILDINGS A

A

Performance-based design stages of tall buildings are described in the following. A

A

6.3.1. Design Stage (I — A): Preliminary Design (dimensioning) with Linear Analysis for A
Controlled Damage/Life Safety Performance Objective under (E2 Level A
Earthquake A

A

6.3.1.1 — This design stage aims at preliminary dimensioning of tall building for Li e Safety / f

Controlled Damage performance objective (see Table 6.1, A

A

6.3.1.2 — A linear analysis shall be performed in the framework of Strength-Based Design A

approach with reduced seismic loads according to Chapter 2 under E2) level earthquake for A

Normal Occupancy Buildings according to Table 1.2, and under (E3) level earthquake for A

Special Occupancy Buildings. A

A

6.3.1.3 — Minimum base shear requirement given by Eq.(2.4) shall be applied. A

A

6.3.1.4 — Preliminary design shall normally follow the design requirements of Chapters 3, 4 A

or 5, however deviations from those requirements may be permitted upon the approval of A

Independent Reviewer s . A

A

6.3.2. Design Stage (I — B): Design with Nonlinear Analysis for Life Safety / Controlled A
Damage Performance Objective under (E2) Level Earthquake A

A

6.3.2.1 — The structural system of a tall building, which is preliminarily designed in Design A

Stage Al A A , Ahall Ahe Alesigned Ainder Ahe Aame Aevel Af Aarthquake Aor Ai e Safety /f

Controlled Damage performance objective. A

A

6.3.2.2 — A nonlinear analysis shall be performed according to the requirements of 6.2 (see A

Table 6.1). Accidental eccentricity effects need not to be considered in this analysis. A

A

6.3.2.3 — The seismic demands obtained according to 6.1.3 as the average of the results of A

minimum 2*7=14 analysis shall be compared with the following capacities: A

a) Interstory drift ratio of each vertical structural element shall not exceed 0.025 at each story A
in each direction. A

b Upper limits of concrete compressive strain at the extreme fiber inside the confinement A
reinforcement And Ahe Aeinforcing Ateel Atrain Are Aiven An Ahe Aollowing Aor Aeinforced A
concrete sections satisfying the confinement requirements: A

A eg@a= 0.0135 ; ew=0.04 A 6.3) A

¢) Deformation capacities of structural steel frame elements shall be taken from ASCE/SEI A
41-06* for Li e Safety performance objective. A

d Shear capacities of reinforced concrete structural elements shall be calculated from EN A
1992-1-1: 2005 using expected strengths given in 6.2.5. A
A

A
*ASCE/SEI 41-06: Seismic Rehabilitation of Existing Buildings, American Society of Civil A
Engineers, st edition, 15/05/2007. A




A

e) In the event where any of the requirements given in a) through d above is not satisfied, A

all design stages shall be repeated with a modified structural system. A

A

6.3.3. Design Stage (II): Design Verification with Linear Analysis for Minimum Damage/ A
Immediate Occupancy Performance Objective under (E1) Level Earthquake A

A

6.3.3.1 — The tall building structural system, which is preliminarily designed in Design Stage A

I — A) and subsequently designed in Design Stage I — B), shall be verified for Immediate f

Occupancy / Minimum Damage performance objective. A

A

6.3.3.2 — A linear analysis shall be performed according to requirements given in 6.2 under A

(E1) level earthquake for Normal Occupancy Buildings and under (E2) level earthquake for A

Special Occupancy Buildings see Table 6.1). A ccidental eccentricity effects need not to be A

considered in this analysis. A

A

6.3.3.3 — Verification-basis internal forces shall be obtained as those calculated from linear A

elastic analysis i.e., &4y, 1.0), irrespective of the type of the structural system. Those forces A

shall be shown not to exceed the strength capacities of cross sections calculated with expected A

material strengths given in 6.2.5. A

A

6.3.3.4 — Interstory drift ratio of each vertical structural element obtained according to 2.7.1 A

shall not exceed 0.01 at each story in each direction. A

A

6.3.3.5 — In the event where 6.3.3.3 and/or 6.3.3.4 is not satisfied, all design stages shall be A

repeated with a modified structural system. A

A

6.3.4. Design Stage (III): Design Verification with Nonlinear Analysis for Extensive A
Damage/ Collapse Prevention Performance Objective under (E3) Level A
Earthquake A

A

6.3.4.1 — The tall building structural system, which is preliminarily designed in Design Stage A

I — A) and subsequently designed in Design Stage | — B, shall be verified for Extensive f

Damage / Collapse Prevention performance objective. A

A

6.3.4.2 — A nonlinear analysis shall be performed under E3) level earthquake according to A

requirements given in 4.2 (see A'able 6.1 . A ccidental Accentricity Affects Aeed Aot to be A

considered in this analysis. A

A

6.3.4.3 — The seismic demands obtained according to 6.1.3 as the average of the results of A

minimum 2*7=14 analysis shall be compared with the following capacities: A

a) Interstory drift ratio of each vertical structural element shall not exceed 0.035 at each story A
in each direction. A

b Upper limits of concrete compressive strain at the extreme fiber inside the confinement A
reinforcement And Ahe Aeinforcing Ateel Atrain Are Aiven An Ahe Aollowing Aor Aeinforced A
concrete sections satisfying the confinement requirements: A

A eg—0.018 5 gp=0.06 A 6.4) A
A



A

¢) Deformation capacities of structural steel frame elements shall be taken from ASCE/SEI A
41-06* for Collapse Prevention performance objective. A

d Shear capacities of reinforced concrete structural elements shall be calculated from EN A
1992-1-1: 2005 using expected strengths given in 6.2.5. A

e) In the event where any of the requirements given in a) through d above is not satisfied, A
all design stages shall be repeated with a modified structural system. A

A
Table 5.1. Performance-based design stages of tall buildings A
. Design Stage A Design Stage A Design Stage A| Design Stage A
Design Stage I-AA I-BA mA I A

. Prelim. design A . . . . .
Design type f (dimensioning A Design A Verification A | Verification A

Normal class | Normal class | Normal class

buildings f buildings f buildings f
Earthquake f | (E2) earthquake A (E2) earthquake A (E1) earthquake A Norn.aal' class f
; ; ; buildings f
Level f Special class f | Special class f | Special class f (E3) carthquake A
buildings f buildings f buildings f d

T

(E3) earthquake A E3) earthquake A (E2) earthquake /

Immediate A Collapse A

Per ormance f . .
objective [ Life Safety A Life Safety A Occupancy A Prevention A

3-D Linear A 3-D Nonlinear A 3-D Linear A 3-D Nonlinear A

Analysis type f Is{gzgfrﬁiz 2 Time—lllist'ory A IS{;ZE‘:)r?;E ﬁ Time-}llist'ory A
nalysis A nalysis A nalysis A nalysis A
Bff;cvtfr”;f g<5.0A ~A g=10A “A
Story dri L %2 A %25 A %1 A %35 A
ratio limit
Effective A Effective A Effective A
Section f Effective A stiffness A stiffness A stiffness A
stif ness in R/C f stiffness A (from moment-A (from moment-A (from moment-A
rame members | curvature A curvature A curvature A
analysis A analysis A analysis A
Material f Design A Expected A Expected A Expected A
strengths [ strength A strength A strength A strength A

Strength A | Strains & Story A  Strength A | Strains & Story A

Acceptance [
criteria f Story drift ratio A drift ratio A | Story drift ratio A drift ratio A
A
A
A

A

*ASCE/SEI 41-06: Seismic Rehabilitation of Existing Buildings, American Society of Civil A
Engineers, st edition, 15/05/2007. A
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A

6.4. DESIGN REQUIREMENTS FOR NONSTRUCTURAL ARCHITECTURAL A
AND MECHANICAL/ELECTRICAL ELEMENTS/COMPONENTS A

A

6.4.1. General A

A

6.4.1.1 — Independently Aesponding Appendages Abalcony, Aarapet, Ahimney, A&tc Ahat Are A

supported by the main structural system of the tall buildings, facade and partioning elements, A

architectural components, mechanical and electrical components and their connections shall A

be analysed for the seismic effects given in this Section. A

A

6.4.1.2 — Component attachments shall be bolted, welded, or otherwise positively fastened A

without consideration of frictional resistance produced by the effects of gravity. A continuous A

load Apath Af Aufficient Atrength And Atiffness Aetween Ahe Aomponent And Ahe Aupporting A

structure shall be provided. Local elements of the structure including connections shall be A

designed And Aonstructed for the Aomponent forces Avhere they Aontrol the design Af the A

elements or their connections. A

A

6.4.1.3 — (E3) Earthquake Level (see 1.2.1 shall be considered for the following nonstructural A

elements and their attachements to the structure: A

a) Elements and components in buildings of Special Occupancy Class (Table 1.2 , A

b Elements and components in buildings of Normal Occupancy Class (Table 1.2) that are A
required to remain operational immeadiately after the earthquake, A

¢) Elements and components related to hazardous material. A

A

6.4.1.4 — (E2) Earthquake Level (see 1.2.1) shall be considered for nonstructural elements A
and components other than those classified in 6.4.1.3. A

A

6.4.1.5 — If the mass of the nonstructural element or component is greater than 20% of the A
storey mass, the element or the component shall be considered an element of the structural A
system with its mass and stiffness characteristics. A

A

6.4.2. Equivalent Seismic Loads A

A

6.4.2.1 — The seismic design force, A, applied in the horizontal direction shall be centered at A
the Acomponent’s Acenter Aof Agravity Aand Adistributed Arelative Ao Ahe Acomponents Amass A
distribution and shall be determined as follows: A

A

A

_ Qe ABE 6.5) A

cA
qu

where Au. represents the Anass, A is the Anaximum Acceleration Acting An the Alement Ar A
component, B, represents the amplification factor and ¢, refers to behaviour factor defined for A
the element or component. B. and R. are given for architectural and mechanical/electrical A
components in Table 6.2 and Table 6.3, respectively. A

A

6.4.2.2 — The maximum acceleration acting on the element or component shall be defined as A
the maximum value to be obtained from the following: A

A



A

a) Maximum value of average total accelerations obtained from nonlinear analysis at Stage A
I-B for Normal Occupancy Class buildings and at Stage III for Special Occupancy Class A
buildings may be defined as 4. . A

b An Aparticular Aases Avhere Anass ZAand Astiffness Acharacteristics Aof Acomponent Aor Ats A
attachement is Aequired to be Aonsidered, A. may be Aalculated As A Apectral Acceleration A
corresponding to Aatural period, A, , Af the A&omponent from the Aloor spectrum obtained A
through the analysis in b . natural period, 7. , may be calculated from; A

A T,= 2;z</’"—f A 6.6 A
Kt

where A srepresents Ahe Zeffective Atiffness Aoefficient fof Ahe Aonstructural Aelement Aor A
component. In this case, amplification factor defined in Eq.(6.5) shall be takenas B. 1. A

A

6.4.2.3 — Equivalent seismic load calculated with Eq.(6.5) shall not be less than the minimum A
load defined below: A

A min A,= 0.3mfSf,, A 6.7 A

6.4.2.4 — Equivalent seismic load given in Eq.(6.5) shall be applied independently in both A
horizontal Aarthquake Alirections An Aombination Avith Ahe Alead Aoad, Aervice Aoads Af Ahe A
element or component plus a vertical seismic load equal to +0.2m,S;, A

A

6.4.2.5 — For elements or components suspended from the structural system (with chains, A
cables, etc), a seismic load equal to 1.4 times the weight of the element or component shall be A
applied simultaneously in both horizontal and vertical directions. A

A

I S S S - N



Table 6.3. Amplification and Behaviour Factors for mechanical/electrical components A

> > >

>

Table 6.2. Amplification and Behaviour Factors for architectural components A

A
rchitectural element or component A B.f| qef
A
Nonstructural plain masonry internal walls and partitions A 1.0A 15A
Nonstructural other internal walls and partitions A 1.0A 25A
Cantilever elements unbraced or braced below their centres of gravity A 25A 25 A
(parapets, cantilever internal walls, laterally supported chimneys, etc A] ™ )
Cantilever elements braced above the centre of gravity (cantilever A
) . 1.0OA 25A
internal walls, chimneys, etc A
External walls and connections A 1.0A 25A
Wood panels A 1.OA 15A
Penthouses independent from structural system A 25A 35A
Suspended ceilings A 1.0A 25A
Storage cabinets and laboratory equipment A 1.0A 2.5A
ccess floors A 1.0A 15A
Signs and billboards A 25A 25A
Other rigid components A 1.OA 25A
Other flexible components A 25A 25A

A

A
Mechanical/electrical element or component A B.f| R.f
A

Boilers and Furnaces A 1LOA 25A
Pressure vessels on skirts and free-standing A 25A 25A
Stacks A 25A 25A
Cantilevered chimneys A 25A 25A
Other A 1.OA 25A
Piping Systems A A A
High deformability elements and attachments A 1.OA 35A
Limited deformability elements and attachments A 1LOA 25A
Low deformability elements and attachments A 1.OA 15A
HVAC System Component A A A
Vibration isolated A 25A 25A
Non-vibration isolated A 1.OA 25A
Mounted in-line with ductwork A 1.OA 25A
Other A 1LOA 25A
Elevator Components A 1.OA 25A
Escalator Components A 1.OA 25A
General Electrical A A A
Distribution systems (bus ducts, conduit, cable tray A 25A 40A
Equipment A 1.OA 25A
Lighting Fixtures A 1.OA 15A
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A

6.4.3. Limitation of displacements A

A

6.4.3.1 — In cases where nonstructural elements or components are attached to two different A
points of the same structure experiencing different displacements, or attached to two different A
structural systems, the effects of relative displacements between the points of attachement A
shall be considered. Relative displacements shall be calculated from the results of nonlinear A
analysis of the structural system at Design Stage I-B for Normal Occupancy Class buildings A
see 6.3.2) or at Design Stage 111 for Special Occupancy Class buildings (see 6.3.4. A

A

6.4.3.2 — Relative displacements of nonstructural elements or components, J. 5 shall not be A
more than the value given in Eq.(6.8). A

SASUhf — hf, (E’fm A 6.8 A

iA

where 4, And 4, Aepresent Ahe Acertical Alistances Af Aop And Aottom Attachement Aoints, A
respectively, of the nonstructural element or component measured from the relevant floor A
level. &; max / A is the allowable storey drift ratio specified in 6.3.2 for Normal Occupancy f
Class buildings and in 6.3.4 for Special Occupancy Class buildings. A

A

6.4.3.3 — Relative displacements of nonstructural elements or components attached to two A
different structural systems shall be calculated as the absolute sum of the maximum relative A
displacements At gpoints Af Attachement And A Ahall Aot Ae Anore Ahan Ahe Aalue Aiven An A
Eq.(6.9). A

SASMA 6iA ‘éaxA_l_ hf SéAmaxAA 6.9 A
hiA hiBA

where 0ia max/ fia V€ 0Oip max / Hip represent the allowable storey drift ratios of the first and A

second Atructural Aystems, Aespectively, Apecified An 4.3.2 for &Normal Occupancy Class A

buildings and in 6.3.4 for Special Occupancy Class buildings. A

A

6.4.4. Nonstructural facade elements and connections A

A

Glass or curtain wall fagade elements of tall buildings shall be subjected to static and dynamic A

tests described in the following standards: A

a) “Recommended Static Test Method for Evaluating Curtain Wall and Store ront Systems f
Subjected fto [ Seismic fand f Wind f Induced fStory fDri ts”, A MA A501.4-00, A merican A
rchitectural Manufacturing Association, Schaumburg, Illinois, 2001. A

(b) “Recommended Dynamic Test Method for Determining the Seismic Drit Causing Glass f

Fallout from a Wall System”, A MA 501.6-01, A merican A rchitectural Manufacturing A
ssociation, Schaumburg, Illinois, 2001. A

A

6.5. INDEPENDENT DESIGN REVIEW A

A

Design Af Aall Auildings According Ao Ahis ALode Ahall Ae Acer Aeviewed And Andorsed Ay A

independent reviewers in all design stages, starting from the structural system inception stage. A

The administrative structure of the independent design review process will be established by A

Dubai Municipality. A

A



CHAPTER 7 A
STRUCTURAL HEALTH MONITORING SYSTEMS A

FOR TALL BUILDINGS A
A
Health monitoring systems shall be established in all tall buildings in order to monitor the real A
behaviour of tall building structural systems, to improve the existing seismic and wind codes A
and to predict the level of seismic damage in a tall building immediately after the ocurrence of A
an Aarthquake. A Aypical Aealth monitoring Aystem Ahall Aave A Aninimum & Acceleration A
sensors distributed in the building, as shown in Fig.7.1. A

a) A cceleration Aensors Ahall be Ayncronized And &Aonnected to A 24-bit digital Aecording A
system Aquipped Avith A GPS Aard. Recording Aystem shall Aecord the building Adbrations A
continuously and transfer the data in real time to a prescribed centre via internet, modem or A
similar channels. Sufficient battery and disk capacity shall be provided against electricity and A
communication shortages, which will help the system operate and store data for at least a A
period of one week. A

b Technical Apecification Af Aensors And Aecording Aystems Ahall be provided by Dubai A
Municipality. A

¢) Vibration records shall be transferred in real time to the Structural Health Monitoring f
Centre of Dubai Municipality. The records shall be stored at this centre as well as by the A
building owner. A

Horizontal sensors A
A
A

T Vertical sensorsA

Figure 7.1 A
A
A



NNEX A A
SOIL CLASSIFICATION FOR A

SPECIFICATION OF SEISMIC GROUND MOTION A
A

.1. Soil classification procedure A
A

.1.1 A Aor Ahe purpose Af Apecifying Alastic Aesponse Apectrum, Ahe Aite Aoil Ahall he A
classified According to A'able A .1. Where the Aoil properties given in A'able A .1 are Aot A
known in sufficient detail to determine the soil class, it shall be permitted to assume Soil A
Class D unless Dubai Municipality determines that Soil Class E or F could apply at the site or A
in the event that Site Class E or F is established by geotechnical data. A

A
Table A.1. Soil classification parameters A
Soil Class A VL (m/s A N or Nf, sf(kPa A
A. Hard rock A > 1500 A NA A NA A
B. Rock A 760 — 1500 A NA A NA A
C. Very dense soil and soft rock A 360 — 760 A >50 A 100 A
D. Stiff soil A 180 —360 A 15-50 A 50-100 A
E. Soft clay soil A <180 A <I5A <50 A
A or any profile with more than 3 m of soil with A

Plasticity index: PI>20 A
Moisture content: w > 40% A
Undrained shear strength: 5f,<25 kPa A

F. Soils requiring site response A | 1. Soils vulnerable to potential failure or collapse
analysis A under seismic loading such as liquefiable soils, A
quick and highly sensitive clays, collapsible A
weakly cemented soils A

2. Peat and/or highly organic clays with more A
than 3 m. A

3. Very high plasticity clays with more than 7.5 m
and PI>75 A

4. Very thick, soft/medium stiff clays with more A
than 35 m and s, <50 kPa A

A
A

.1.2 — The parameters used in Table A.1 to define the Soil Class are based on the upper 30 A
m Af the Aite profile. Profiles Aontaining distinctly different Aoil And Aock layers Ahall be A
subdivided into those layers designated by a number that ranges from 1 to n at the bottom A
where there are a total of n distinct layers in the upper 30 m. The symbol 7 then refers to any A

one Af Ahe Aayers Aetween A And A. Rarameters Aharacterizing Aipper A0 M As Alefined As A
follows: A

(@) A Rei— A Al f
0
i 1aYsiA
A

where vg; = shear wave velocity in m/s A
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A

nA
d; thickness of any layer (between 0 and 30 m). Zd) is equal to 30 m. A

A 1
26
b A Nf=o- 12— A A2)f
20
f

where AV; = Standard Renetration Resistance As Alirectly, Aneasured An Ahe Aield Avithout A
corrections, and shall not be taken greater than 100 blows/ft. Where refusal is met for a rock A
layer, AV; shall be taken As 100 blows/ft. A; and &; in Aq.(A.2) are for Aohesionless Aoil, A
cohesive soil and rock layers. A

A

©A . (SN A3)f
2®,

A

where N; and d; in Eq.(A.3) are for cohesionless soil layers only. A

mA
ds total thickness of cohesionless soil layers in the top 30 m. Zdi =d, A

i 1A
A
d A zf@% A 4)f
W
i 1ASuiA
A

where s,; = undrained shear strength in kPa, and shall not be taken greater than 250 kPa. A

kA
d. total thickness of cohesive soil layers in the top 30 m. Zdi =d, A
i 1A
.2. Steps for classifying Soil Classes C,D,E,F A
A
Step 1: Check for the four categories of Soil Class F see Table A.1) requiring site-specific A
evaluation. If the site corresponds to any of these categories, classify the site as Soil Class F A
and conduct a site-specific evaluation. A
A
Step 2: Check for the existence of a total thickness of soft clay > 3 m where a soft clay layer A
is defined by s, <25 kPa, w > 40% and P/ > 20. If these criteria are satisfied, classify the site A
as Soil Class E. A
A

Step 3: Categorize the site using one of the following three methods with NS,JV and &, f

computed in all cases as specified in A.1.2: A
A
a) v, for the top 30 m (v, method) A

b N for the top 30 m (A method) A
) ]Vch , for cohesionless soil layers P/ < 20) in the top 30 m and average s, for cohesive soil A

layers (PI > 20) in the top 30 m (5, method) A
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A

If Afmethod is used and, AVf;, and &, criteria differ, the category with the softer soils shall be A

selected (for example, use Soil Class E instead of D). A
A

3. Classifying Soil Classes A,B A
A

3.1 — Assignment of Soil Class B shall be based on the shear wave velocity for rock. For A
competent Aock Avith Anoderate Aracturing And Aveathering, &stimation Af Ahis Ahear Avave A
velocity shall be permitted. For more highly fractured and weathered rock, the shear wave A
velocity shall be directly measured or the site shall be assigned to Soil Class C. A
A

3.2 — A ssignment Af Aoil Llass A shall he Aupported Ay Aither Ahear Avave Arelocity A
measurements on site or shear wave velocity measurements on profiles of the same rock type A
in the same formation with an equal or greater degree of weathering and fracturing. Where A
hard rock conditions are known to be continuous to a depth of 30 m, surficial shear wave A
velocity measurements may be extrapolated to assess v,. f

f

3.3 — Soil Classes A and B shall not be used where there is more than 3 m of soil between A
the rock surface and the bottom of the spread footing or mat foundation. A
A

A
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